Bi-Level Strategies in Semi-Infinite Programming:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
2003
|
Schriftenreihe: | Nonconvex Optimization and Its Applications
71 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Semi-infinite optimization is a vivid field of active research. Recently semi infinite optimization in a general form has attracted a lot of attention, not only because of its surprising structural aspects, but also due to the large number of applications which can be formulated as general semi-infinite programs. The aim of this book is to highlight structural aspects of general semi-infinite programming, to formulate optimality conditions which take this structure into account, and to give a conceptually new solution method. In fact, under certain assumptions general semi-infinite programs can be solved efficiently when their bi-Ievel structure is exploited appropriately. After a brief introduction with some historical background in Chapter 1 we be gin our presentation by a motivation for the appearance of standard and general semi-infinite optimization problems in applications. Chapter 2 lists a number of problems from engineering and economics which give rise to semi-infinite models, including (reverse) Chebyshev approximation, minimax problems, ro bust optimization, design centering, defect minimization problems for operator equations, and disjunctive programming |
Beschreibung: | 1 Online-Ressource (XXVIII, 202 p) |
ISBN: | 9781441991645 9781461348177 |
ISSN: | 1571-568X |
DOI: | 10.1007/978-1-4419-9164-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042419322 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2003 |||| o||u| ||||||eng d | ||
020 | |a 9781441991645 |c Online |9 978-1-4419-9164-5 | ||
020 | |a 9781461348177 |c Print |9 978-1-4613-4817-7 | ||
024 | 7 | |a 10.1007/978-1-4419-9164-5 |2 doi | |
035 | |a (OCoLC)864738468 | ||
035 | |a (DE-599)BVBBV042419322 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.6 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Stein, Oliver |e Verfasser |4 aut | |
245 | 1 | 0 | |a Bi-Level Strategies in Semi-Infinite Programming |c by Oliver Stein |
264 | 1 | |a Boston, MA |b Springer US |c 2003 | |
300 | |a 1 Online-Ressource (XXVIII, 202 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Nonconvex Optimization and Its Applications |v 71 |x 1571-568X | |
500 | |a Semi-infinite optimization is a vivid field of active research. Recently semi infinite optimization in a general form has attracted a lot of attention, not only because of its surprising structural aspects, but also due to the large number of applications which can be formulated as general semi-infinite programs. The aim of this book is to highlight structural aspects of general semi-infinite programming, to formulate optimality conditions which take this structure into account, and to give a conceptually new solution method. In fact, under certain assumptions general semi-infinite programs can be solved efficiently when their bi-Ievel structure is exploited appropriately. After a brief introduction with some historical background in Chapter 1 we be gin our presentation by a motivation for the appearance of standard and general semi-infinite optimization problems in applications. Chapter 2 lists a number of problems from engineering and economics which give rise to semi-infinite models, including (reverse) Chebyshev approximation, minimax problems, ro bust optimization, design centering, defect minimization problems for operator equations, and disjunctive programming | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Computer science / Mathematics | |
650 | 4 | |a Discrete groups | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Optimization | |
650 | 4 | |a Calculus of Variations and Optimal Control; Optimization | |
650 | 4 | |a Computational Mathematics and Numerical Analysis | |
650 | 4 | |a Convex and Discrete Geometry | |
650 | 4 | |a Informatik | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Semiinfinite Optimierung |0 (DE-588)4137036-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Semiinfinite Optimierung |0 (DE-588)4137036-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4419-9164-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854739 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153089827012608 |
---|---|
any_adam_object | |
author | Stein, Oliver |
author_facet | Stein, Oliver |
author_role | aut |
author_sort | Stein, Oliver |
author_variant | o s os |
building | Verbundindex |
bvnumber | BV042419322 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)864738468 (DE-599)BVBBV042419322 |
dewey-full | 519.6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.6 |
dewey-search | 519.6 |
dewey-sort | 3519.6 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4419-9164-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03032nmm a2200529zcb4500</leader><controlfield tag="001">BV042419322</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441991645</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4419-9164-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461348177</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4613-4817-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4419-9164-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864738468</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419322</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.6</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Stein, Oliver</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bi-Level Strategies in Semi-Infinite Programming</subfield><subfield code="c">by Oliver Stein</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXVIII, 202 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Nonconvex Optimization and Its Applications</subfield><subfield code="v">71</subfield><subfield code="x">1571-568X</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Semi-infinite optimization is a vivid field of active research. Recently semi infinite optimization in a general form has attracted a lot of attention, not only because of its surprising structural aspects, but also due to the large number of applications which can be formulated as general semi-infinite programs. The aim of this book is to highlight structural aspects of general semi-infinite programming, to formulate optimality conditions which take this structure into account, and to give a conceptually new solution method. In fact, under certain assumptions general semi-infinite programs can be solved efficiently when their bi-Ievel structure is exploited appropriately. After a brief introduction with some historical background in Chapter 1 we be gin our presentation by a motivation for the appearance of standard and general semi-infinite optimization problems in applications. Chapter 2 lists a number of problems from engineering and economics which give rise to semi-infinite models, including (reverse) Chebyshev approximation, minimax problems, ro bust optimization, design centering, defect minimization problems for operator equations, and disjunctive programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discrete groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of Variations and Optimal Control; Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Mathematics and Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex and Discrete Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Semiinfinite Optimierung</subfield><subfield code="0">(DE-588)4137036-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Semiinfinite Optimierung</subfield><subfield code="0">(DE-588)4137036-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4419-9164-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854739</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419322 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9781441991645 9781461348177 |
issn | 1571-568X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854739 |
oclc_num | 864738468 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XXVIII, 202 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Springer US |
record_format | marc |
series2 | Nonconvex Optimization and Its Applications |
spelling | Stein, Oliver Verfasser aut Bi-Level Strategies in Semi-Infinite Programming by Oliver Stein Boston, MA Springer US 2003 1 Online-Ressource (XXVIII, 202 p) txt rdacontent c rdamedia cr rdacarrier Nonconvex Optimization and Its Applications 71 1571-568X Semi-infinite optimization is a vivid field of active research. Recently semi infinite optimization in a general form has attracted a lot of attention, not only because of its surprising structural aspects, but also due to the large number of applications which can be formulated as general semi-infinite programs. The aim of this book is to highlight structural aspects of general semi-infinite programming, to formulate optimality conditions which take this structure into account, and to give a conceptually new solution method. In fact, under certain assumptions general semi-infinite programs can be solved efficiently when their bi-Ievel structure is exploited appropriately. After a brief introduction with some historical background in Chapter 1 we be gin our presentation by a motivation for the appearance of standard and general semi-infinite optimization problems in applications. Chapter 2 lists a number of problems from engineering and economics which give rise to semi-infinite models, including (reverse) Chebyshev approximation, minimax problems, ro bust optimization, design centering, defect minimization problems for operator equations, and disjunctive programming Mathematics Computer science / Mathematics Discrete groups Mathematical optimization Optimization Calculus of Variations and Optimal Control; Optimization Computational Mathematics and Numerical Analysis Convex and Discrete Geometry Informatik Mathematik Semiinfinite Optimierung (DE-588)4137036-3 gnd rswk-swf Semiinfinite Optimierung (DE-588)4137036-3 s 1\p DE-604 https://doi.org/10.1007/978-1-4419-9164-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Stein, Oliver Bi-Level Strategies in Semi-Infinite Programming Mathematics Computer science / Mathematics Discrete groups Mathematical optimization Optimization Calculus of Variations and Optimal Control; Optimization Computational Mathematics and Numerical Analysis Convex and Discrete Geometry Informatik Mathematik Semiinfinite Optimierung (DE-588)4137036-3 gnd |
subject_GND | (DE-588)4137036-3 |
title | Bi-Level Strategies in Semi-Infinite Programming |
title_auth | Bi-Level Strategies in Semi-Infinite Programming |
title_exact_search | Bi-Level Strategies in Semi-Infinite Programming |
title_full | Bi-Level Strategies in Semi-Infinite Programming by Oliver Stein |
title_fullStr | Bi-Level Strategies in Semi-Infinite Programming by Oliver Stein |
title_full_unstemmed | Bi-Level Strategies in Semi-Infinite Programming by Oliver Stein |
title_short | Bi-Level Strategies in Semi-Infinite Programming |
title_sort | bi level strategies in semi infinite programming |
topic | Mathematics Computer science / Mathematics Discrete groups Mathematical optimization Optimization Calculus of Variations and Optimal Control; Optimization Computational Mathematics and Numerical Analysis Convex and Discrete Geometry Informatik Mathematik Semiinfinite Optimierung (DE-588)4137036-3 gnd |
topic_facet | Mathematics Computer science / Mathematics Discrete groups Mathematical optimization Optimization Calculus of Variations and Optimal Control; Optimization Computational Mathematics and Numerical Analysis Convex and Discrete Geometry Informatik Mathematik Semiinfinite Optimierung |
url | https://doi.org/10.1007/978-1-4419-9164-5 |
work_keys_str_mv | AT steinoliver bilevelstrategiesinsemiinfiniteprogramming |