A History of Inverse Probability: From Thomas Bayes to Karl Pearson
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1999
|
Ausgabe: | Second Edition |
Schriftenreihe: | Sources and Studies in the History of Mathematics and Physical Sciences
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | La derniere chose qu 'on trouve en faisant un ouvrage, est de savoir celie qu 'il faut mettre la premiere. Blaise Pascal, Pensees. In the Preface to the first edition of his Grammar of Science Karl Pearson, with a cavalier approach to one of the niceties of conventional grammar, wrote There are periods in the growth of science when it is well to turn our attention from its imposing superstructure and to carefully examine its foundations. Since statistics is fundamental to all science, and since probability in turn is as necessary in the understanding and development of statistical tech niques and theory as it is in life in general, it is necessary, I believe, for statisticians to heed Pearson's dictum and to consider, at least from time to time, the foundations of their discipline. It is with this in mind that this work is offered, my particular concern being the examination of the devel opment of one of the fundamental aspects of modern Bayesian Statistics |
Beschreibung: | 1 Online-Ressource (XXIV, 671 p) |
ISBN: | 9781441986528 9781461264477 |
DOI: | 10.1007/978-1-4419-8652-8 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419291 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1999 xx o|||| 00||| eng d | ||
020 | |a 9781441986528 |c Online |9 978-1-4419-8652-8 | ||
020 | |a 9781461264477 |c Print |9 978-1-4612-6447-7 | ||
024 | 7 | |a 10.1007/978-1-4419-8652-8 |2 doi | |
035 | |a (OCoLC)724677459 | ||
035 | |a (DE-599)BVBBV042419291 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Dale, Andrew I. |e Verfasser |4 aut | |
245 | 1 | 0 | |a A History of Inverse Probability |b From Thomas Bayes to Karl Pearson |c by Andrew I. Dale |
250 | |a Second Edition | ||
264 | 1 | |a New York, NY |b Springer New York |c 1999 | |
300 | |a 1 Online-Ressource (XXIV, 671 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Sources and Studies in the History of Mathematics and Physical Sciences | |
500 | |a La derniere chose qu 'on trouve en faisant un ouvrage, est de savoir celie qu 'il faut mettre la premiere. Blaise Pascal, Pensees. In the Preface to the first edition of his Grammar of Science Karl Pearson, with a cavalier approach to one of the niceties of conventional grammar, wrote There are periods in the growth of science when it is well to turn our attention from its imposing superstructure and to carefully examine its foundations. Since statistics is fundamental to all science, and since probability in turn is as necessary in the understanding and development of statistical tech niques and theory as it is in life in general, it is necessary, I believe, for statisticians to heed Pearson's dictum and to consider, at least from time to time, the foundations of their discipline. It is with this in mind that this work is offered, my particular concern being the examination of the devel opment of one of the fundamental aspects of modern Bayesian Statistics | ||
648 | 7 | |a Geschichte 1761-1936 |2 gnd |9 rswk-swf | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a A-posteriori-Wahrscheinlichkeit |0 (DE-588)4273821-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wahrscheinlichkeit |0 (DE-588)4137007-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wahrscheinlichkeitstheorie |0 (DE-588)4079013-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bayes-Entscheidungstheorie |0 (DE-588)4144220-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geschichte |0 (DE-588)4020517-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Inverses Problem |0 (DE-588)4125161-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Entscheidungstheorie |0 (DE-588)4138606-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wahrscheinlichkeitstheorie |0 (DE-588)4079013-7 |D s |
689 | 0 | 1 | |a Geschichte |0 (DE-588)4020517-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a A-posteriori-Wahrscheinlichkeit |0 (DE-588)4273821-0 |D s |
689 | 1 | 1 | |a Geschichte 1761-1936 |A z |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Bayes-Entscheidungstheorie |0 (DE-588)4144220-9 |D s |
689 | 2 | 1 | |a Geschichte |0 (DE-588)4020517-4 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Entscheidungstheorie |0 (DE-588)4138606-1 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
689 | 4 | 0 | |a Wahrscheinlichkeit |0 (DE-588)4137007-7 |D s |
689 | 4 | |8 5\p |5 DE-604 | |
689 | 5 | 0 | |a Inverses Problem |0 (DE-588)4125161-1 |D s |
689 | 5 | |8 6\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4419-8652-8 |x Verlag |3 Volltext |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 6\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
912 | |a ZDB-2-SMA | ||
912 | |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-027854708 |
Datensatz im Suchindex
_version_ | 1824627604847591424 |
---|---|
adam_text | |
any_adam_object | |
author | Dale, Andrew I. |
author_facet | Dale, Andrew I. |
author_role | aut |
author_sort | Dale, Andrew I. |
author_variant | a i d ai aid |
building | Verbundindex |
bvnumber | BV042419291 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)724677459 (DE-599)BVBBV042419291 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4419-8652-8 |
edition | Second Edition |
era | Geschichte 1761-1936 gnd |
era_facet | Geschichte 1761-1936 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV042419291</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1999 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441986528</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4419-8652-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461264477</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-6447-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4419-8652-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)724677459</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419291</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dale, Andrew I.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A History of Inverse Probability</subfield><subfield code="b">From Thomas Bayes to Karl Pearson</subfield><subfield code="c">by Andrew I. Dale</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXIV, 671 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Sources and Studies in the History of Mathematics and Physical Sciences</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">La derniere chose qu 'on trouve en faisant un ouvrage, est de savoir celie qu 'il faut mettre la premiere. Blaise Pascal, Pensees. In the Preface to the first edition of his Grammar of Science Karl Pearson, with a cavalier approach to one of the niceties of conventional grammar, wrote There are periods in the growth of science when it is well to turn our attention from its imposing superstructure and to carefully examine its foundations. Since statistics is fundamental to all science, and since probability in turn is as necessary in the understanding and development of statistical tech niques and theory as it is in life in general, it is necessary, I believe, for statisticians to heed Pearson's dictum and to consider, at least from time to time, the foundations of their discipline. It is with this in mind that this work is offered, my particular concern being the examination of the devel opment of one of the fundamental aspects of modern Bayesian Statistics</subfield></datafield><datafield tag="648" ind1=" " ind2="7"><subfield code="a">Geschichte 1761-1936</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">A-posteriori-Wahrscheinlichkeit</subfield><subfield code="0">(DE-588)4273821-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeit</subfield><subfield code="0">(DE-588)4137007-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bayes-Entscheidungstheorie</subfield><subfield code="0">(DE-588)4144220-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geschichte</subfield><subfield code="0">(DE-588)4020517-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Inverses Problem</subfield><subfield code="0">(DE-588)4125161-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Entscheidungstheorie</subfield><subfield code="0">(DE-588)4138606-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geschichte</subfield><subfield code="0">(DE-588)4020517-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">A-posteriori-Wahrscheinlichkeit</subfield><subfield code="0">(DE-588)4273821-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Geschichte 1761-1936</subfield><subfield code="A">z</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Bayes-Entscheidungstheorie</subfield><subfield code="0">(DE-588)4144220-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Geschichte</subfield><subfield code="0">(DE-588)4020517-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Entscheidungstheorie</subfield><subfield code="0">(DE-588)4138606-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Wahrscheinlichkeit</subfield><subfield code="0">(DE-588)4137007-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="5" ind2="0"><subfield code="a">Inverses Problem</subfield><subfield code="0">(DE-588)4125161-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2=" "><subfield code="8">6\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4419-8652-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">6\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854708</subfield></datafield></record></collection> |
id | DE-604.BV042419291 |
illustrated | Not Illustrated |
indexdate | 2025-02-21T01:14:43Z |
institution | BVB |
isbn | 9781441986528 9781461264477 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854708 |
oclc_num | 724677459 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XXIV, 671 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Springer New York |
record_format | marc |
series2 | Sources and Studies in the History of Mathematics and Physical Sciences |
spelling | Dale, Andrew I. Verfasser aut A History of Inverse Probability From Thomas Bayes to Karl Pearson by Andrew I. Dale Second Edition New York, NY Springer New York 1999 1 Online-Ressource (XXIV, 671 p) txt rdacontent c rdamedia cr rdacarrier Sources and Studies in the History of Mathematics and Physical Sciences La derniere chose qu 'on trouve en faisant un ouvrage, est de savoir celie qu 'il faut mettre la premiere. Blaise Pascal, Pensees. In the Preface to the first edition of his Grammar of Science Karl Pearson, with a cavalier approach to one of the niceties of conventional grammar, wrote There are periods in the growth of science when it is well to turn our attention from its imposing superstructure and to carefully examine its foundations. Since statistics is fundamental to all science, and since probability in turn is as necessary in the understanding and development of statistical tech niques and theory as it is in life in general, it is necessary, I believe, for statisticians to heed Pearson's dictum and to consider, at least from time to time, the foundations of their discipline. It is with this in mind that this work is offered, my particular concern being the examination of the devel opment of one of the fundamental aspects of modern Bayesian Statistics Geschichte 1761-1936 gnd rswk-swf Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik A-posteriori-Wahrscheinlichkeit (DE-588)4273821-0 gnd rswk-swf Wahrscheinlichkeit (DE-588)4137007-7 gnd rswk-swf Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd rswk-swf Bayes-Entscheidungstheorie (DE-588)4144220-9 gnd rswk-swf Geschichte (DE-588)4020517-4 gnd rswk-swf Inverses Problem (DE-588)4125161-1 gnd rswk-swf Entscheidungstheorie (DE-588)4138606-1 gnd rswk-swf Wahrscheinlichkeitstheorie (DE-588)4079013-7 s Geschichte (DE-588)4020517-4 s 1\p DE-604 A-posteriori-Wahrscheinlichkeit (DE-588)4273821-0 s Geschichte 1761-1936 z 2\p DE-604 Bayes-Entscheidungstheorie (DE-588)4144220-9 s 3\p DE-604 Entscheidungstheorie (DE-588)4138606-1 s 4\p DE-604 Wahrscheinlichkeit (DE-588)4137007-7 s 5\p DE-604 Inverses Problem (DE-588)4125161-1 s 6\p DE-604 https://doi.org/10.1007/978-1-4419-8652-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 6\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Dale, Andrew I. A History of Inverse Probability From Thomas Bayes to Karl Pearson Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik A-posteriori-Wahrscheinlichkeit (DE-588)4273821-0 gnd Wahrscheinlichkeit (DE-588)4137007-7 gnd Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd Bayes-Entscheidungstheorie (DE-588)4144220-9 gnd Geschichte (DE-588)4020517-4 gnd Inverses Problem (DE-588)4125161-1 gnd Entscheidungstheorie (DE-588)4138606-1 gnd |
subject_GND | (DE-588)4273821-0 (DE-588)4137007-7 (DE-588)4079013-7 (DE-588)4144220-9 (DE-588)4020517-4 (DE-588)4125161-1 (DE-588)4138606-1 |
title | A History of Inverse Probability From Thomas Bayes to Karl Pearson |
title_auth | A History of Inverse Probability From Thomas Bayes to Karl Pearson |
title_exact_search | A History of Inverse Probability From Thomas Bayes to Karl Pearson |
title_full | A History of Inverse Probability From Thomas Bayes to Karl Pearson by Andrew I. Dale |
title_fullStr | A History of Inverse Probability From Thomas Bayes to Karl Pearson by Andrew I. Dale |
title_full_unstemmed | A History of Inverse Probability From Thomas Bayes to Karl Pearson by Andrew I. Dale |
title_short | A History of Inverse Probability |
title_sort | a history of inverse probability from thomas bayes to karl pearson |
title_sub | From Thomas Bayes to Karl Pearson |
topic | Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik A-posteriori-Wahrscheinlichkeit (DE-588)4273821-0 gnd Wahrscheinlichkeit (DE-588)4137007-7 gnd Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd Bayes-Entscheidungstheorie (DE-588)4144220-9 gnd Geschichte (DE-588)4020517-4 gnd Inverses Problem (DE-588)4125161-1 gnd Entscheidungstheorie (DE-588)4138606-1 gnd |
topic_facet | Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik A-posteriori-Wahrscheinlichkeit Wahrscheinlichkeit Wahrscheinlichkeitstheorie Bayes-Entscheidungstheorie Geschichte Inverses Problem Entscheidungstheorie |
url | https://doi.org/10.1007/978-1-4419-8652-8 |
work_keys_str_mv | AT daleandrewi ahistoryofinverseprobabilityfromthomasbayestokarlpearson |