Variational and Hemivariational Inequalities Theory, Methods and Applications: Volume I: Unilateral Analysis and Unilateral Mechanics
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
2003
|
Schriftenreihe: | Nonconvex Optimization and Its Applications
69 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book includes a self-contained theory of inequality problems and their applications to unilateral mechanics. Fundamental theoretical results and related methods of analysis are discussed on various examples and applications in mechanics. The work can be seen as a book of applied nonlinear analysis entirely devoted to the study of inequality problems, i.e. variational inequalities and hemivariational inequalities in mathematical models and their corresponding applications to unilateral mechanics. It contains a systematic investigation of the interplay between theoretical results and concrete problems in mechanics. It is the first textbook including a comprehensive and systematic study of both elliptic, parabolic and hyperbolic inequality models, dynamical unilateral systems and unilateral eigenvalues problems. The book is self-contained and it offers, for the first time, the possibility to learn about inequality models and to acquire the essence of the theory in a relatively short time |
Beschreibung: | 1 Online-Ressource (XIII, 410 p) |
ISBN: | 9781441986108 9781461346463 |
ISSN: | 1571-568X |
DOI: | 10.1007/978-1-4419-8610-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042419286 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2003 |||| o||u| ||||||eng d | ||
020 | |a 9781441986108 |c Online |9 978-1-4419-8610-8 | ||
020 | |a 9781461346463 |c Print |9 978-1-4613-4646-3 | ||
024 | 7 | |a 10.1007/978-1-4419-8610-8 |2 doi | |
035 | |a (OCoLC)864735506 | ||
035 | |a (DE-599)BVBBV042419286 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.64 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Goeleven, D. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Variational and Hemivariational Inequalities Theory, Methods and Applications |b Volume I: Unilateral Analysis and Unilateral Mechanics |c by D. Goeleven, D. Motreanu, Y. Dumont, M. Rochdi |
264 | 1 | |a Boston, MA |b Springer US |c 2003 | |
300 | |a 1 Online-Ressource (XIII, 410 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Nonconvex Optimization and Its Applications |v 69 |x 1571-568X | |
500 | |a This book includes a self-contained theory of inequality problems and their applications to unilateral mechanics. Fundamental theoretical results and related methods of analysis are discussed on various examples and applications in mechanics. The work can be seen as a book of applied nonlinear analysis entirely devoted to the study of inequality problems, i.e. variational inequalities and hemivariational inequalities in mathematical models and their corresponding applications to unilateral mechanics. It contains a systematic investigation of the interplay between theoretical results and concrete problems in mechanics. It is the first textbook including a comprehensive and systematic study of both elliptic, parabolic and hyperbolic inequality models, dynamical unilateral systems and unilateral eigenvalues problems. The book is self-contained and it offers, for the first time, the possibility to learn about inequality models and to acquire the essence of the theory in a relatively short time | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Differential Equations | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Calculus of Variations and Optimal Control; Optimization | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Optimization | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Ordinary Differential Equations | |
650 | 4 | |a Mathematik | |
700 | 1 | |a Motreanu, D. |e Sonstige |4 oth | |
700 | 1 | |a Dumont, Y. |e Sonstige |4 oth | |
700 | 1 | |a Rochdi, M. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4419-8610-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854703 |
Datensatz im Suchindex
_version_ | 1804153089734737920 |
---|---|
any_adam_object | |
author | Goeleven, D. |
author_facet | Goeleven, D. |
author_role | aut |
author_sort | Goeleven, D. |
author_variant | d g dg |
building | Verbundindex |
bvnumber | BV042419286 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)864735506 (DE-599)BVBBV042419286 |
dewey-full | 515.64 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.64 |
dewey-search | 515.64 |
dewey-sort | 3515.64 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4419-8610-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02848nmm a2200517zcb4500</leader><controlfield tag="001">BV042419286</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441986108</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4419-8610-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461346463</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4613-4646-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4419-8610-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864735506</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419286</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.64</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Goeleven, D.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Variational and Hemivariational Inequalities Theory, Methods and Applications</subfield><subfield code="b">Volume I: Unilateral Analysis and Unilateral Mechanics</subfield><subfield code="c">by D. Goeleven, D. Motreanu, Y. Dumont, M. Rochdi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 410 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Nonconvex Optimization and Its Applications</subfield><subfield code="v">69</subfield><subfield code="x">1571-568X</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book includes a self-contained theory of inequality problems and their applications to unilateral mechanics. Fundamental theoretical results and related methods of analysis are discussed on various examples and applications in mechanics. The work can be seen as a book of applied nonlinear analysis entirely devoted to the study of inequality problems, i.e. variational inequalities and hemivariational inequalities in mathematical models and their corresponding applications to unilateral mechanics. It contains a systematic investigation of the interplay between theoretical results and concrete problems in mechanics. It is the first textbook including a comprehensive and systematic study of both elliptic, parabolic and hyperbolic inequality models, dynamical unilateral systems and unilateral eigenvalues problems. The book is self-contained and it offers, for the first time, the possibility to learn about inequality models and to acquire the essence of the theory in a relatively short time</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of Variations and Optimal Control; Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordinary Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Motreanu, D.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dumont, Y.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rochdi, M.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4419-8610-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854703</subfield></datafield></record></collection> |
id | DE-604.BV042419286 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9781441986108 9781461346463 |
issn | 1571-568X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854703 |
oclc_num | 864735506 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIII, 410 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Springer US |
record_format | marc |
series2 | Nonconvex Optimization and Its Applications |
spelling | Goeleven, D. Verfasser aut Variational and Hemivariational Inequalities Theory, Methods and Applications Volume I: Unilateral Analysis and Unilateral Mechanics by D. Goeleven, D. Motreanu, Y. Dumont, M. Rochdi Boston, MA Springer US 2003 1 Online-Ressource (XIII, 410 p) txt rdacontent c rdamedia cr rdacarrier Nonconvex Optimization and Its Applications 69 1571-568X This book includes a self-contained theory of inequality problems and their applications to unilateral mechanics. Fundamental theoretical results and related methods of analysis are discussed on various examples and applications in mechanics. The work can be seen as a book of applied nonlinear analysis entirely devoted to the study of inequality problems, i.e. variational inequalities and hemivariational inequalities in mathematical models and their corresponding applications to unilateral mechanics. It contains a systematic investigation of the interplay between theoretical results and concrete problems in mechanics. It is the first textbook including a comprehensive and systematic study of both elliptic, parabolic and hyperbolic inequality models, dynamical unilateral systems and unilateral eigenvalues problems. The book is self-contained and it offers, for the first time, the possibility to learn about inequality models and to acquire the essence of the theory in a relatively short time Mathematics Differential Equations Differential equations, partial Mathematical optimization Calculus of Variations and Optimal Control; Optimization Partial Differential Equations Optimization Applications of Mathematics Ordinary Differential Equations Mathematik Motreanu, D. Sonstige oth Dumont, Y. Sonstige oth Rochdi, M. Sonstige oth https://doi.org/10.1007/978-1-4419-8610-8 Verlag Volltext |
spellingShingle | Goeleven, D. Variational and Hemivariational Inequalities Theory, Methods and Applications Volume I: Unilateral Analysis and Unilateral Mechanics Mathematics Differential Equations Differential equations, partial Mathematical optimization Calculus of Variations and Optimal Control; Optimization Partial Differential Equations Optimization Applications of Mathematics Ordinary Differential Equations Mathematik |
title | Variational and Hemivariational Inequalities Theory, Methods and Applications Volume I: Unilateral Analysis and Unilateral Mechanics |
title_auth | Variational and Hemivariational Inequalities Theory, Methods and Applications Volume I: Unilateral Analysis and Unilateral Mechanics |
title_exact_search | Variational and Hemivariational Inequalities Theory, Methods and Applications Volume I: Unilateral Analysis and Unilateral Mechanics |
title_full | Variational and Hemivariational Inequalities Theory, Methods and Applications Volume I: Unilateral Analysis and Unilateral Mechanics by D. Goeleven, D. Motreanu, Y. Dumont, M. Rochdi |
title_fullStr | Variational and Hemivariational Inequalities Theory, Methods and Applications Volume I: Unilateral Analysis and Unilateral Mechanics by D. Goeleven, D. Motreanu, Y. Dumont, M. Rochdi |
title_full_unstemmed | Variational and Hemivariational Inequalities Theory, Methods and Applications Volume I: Unilateral Analysis and Unilateral Mechanics by D. Goeleven, D. Motreanu, Y. Dumont, M. Rochdi |
title_short | Variational and Hemivariational Inequalities Theory, Methods and Applications |
title_sort | variational and hemivariational inequalities theory methods and applications volume i unilateral analysis and unilateral mechanics |
title_sub | Volume I: Unilateral Analysis and Unilateral Mechanics |
topic | Mathematics Differential Equations Differential equations, partial Mathematical optimization Calculus of Variations and Optimal Control; Optimization Partial Differential Equations Optimization Applications of Mathematics Ordinary Differential Equations Mathematik |
topic_facet | Mathematics Differential Equations Differential equations, partial Mathematical optimization Calculus of Variations and Optimal Control; Optimization Partial Differential Equations Optimization Applications of Mathematics Ordinary Differential Equations Mathematik |
url | https://doi.org/10.1007/978-1-4419-8610-8 |
work_keys_str_mv | AT goelevend variationalandhemivariationalinequalitiestheorymethodsandapplicationsvolumeiunilateralanalysisandunilateralmechanics AT motreanud variationalandhemivariationalinequalitiestheorymethodsandapplicationsvolumeiunilateralanalysisandunilateralmechanics AT dumonty variationalandhemivariationalinequalitiestheorymethodsandapplicationsvolumeiunilateralanalysisandunilateralmechanics AT rochdim variationalandhemivariationalinequalitiestheorymethodsandapplicationsvolumeiunilateralanalysisandunilateralmechanics |