A First Course in Probability Models and Statistical Inference:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1994
|
Schriftenreihe: | Springer Texts in Statistics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Welcome to new territory: A course in probability models and statistical inference. The concept of probability is not new to you of course. You've encountered it since childhood in games of chance-card games, for example, or games with dice or coins. And you know about the "90% chance of rain" from weather reports. But once you get beyond simple expressions of probability into more subtle analysis, it's new territory. And very foreign territory it is. You must have encountered reports of statistical results in voter sur veys, opinion polls, and other such studies, but how are conclusions from those studies obtained? How can you interview just a few voters the day before an election and still determine fairly closely how HUN DREDS of THOUSANDS of voters will vote? That's statistics. You'll find it very interesting during this first course to see how a properly designed statistical study can achieve so much knowledge from such drastically incomplete information. It really is possible-statistics works! But HOW does it work? By the end of this course you'll have understood that and much more. Welcome to the enchanted forest |
Beschreibung: | 1 Online-Ressource (XXXI, 719 p) |
ISBN: | 9781441985408 9781461264316 |
ISSN: | 1431-875X |
DOI: | 10.1007/978-1-4419-8540-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419276 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1994 |||| o||u| ||||||eng d | ||
020 | |a 9781441985408 |c Online |9 978-1-4419-8540-8 | ||
020 | |a 9781461264316 |c Print |9 978-1-4612-6431-6 | ||
024 | 7 | |a 10.1007/978-1-4419-8540-8 |2 doi | |
035 | |a (OCoLC)724646642 | ||
035 | |a (DE-599)BVBBV042419276 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Creighton, J. H. C. |e Verfasser |4 aut | |
245 | 1 | 0 | |a A First Course in Probability Models and Statistical Inference |c by J. H. C. Creighton |
264 | 1 | |a New York, NY |b Springer New York |c 1994 | |
300 | |a 1 Online-Ressource (XXXI, 719 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Texts in Statistics |x 1431-875X | |
500 | |a Welcome to new territory: A course in probability models and statistical inference. The concept of probability is not new to you of course. You've encountered it since childhood in games of chance-card games, for example, or games with dice or coins. And you know about the "90% chance of rain" from weather reports. But once you get beyond simple expressions of probability into more subtle analysis, it's new territory. And very foreign territory it is. You must have encountered reports of statistical results in voter sur veys, opinion polls, and other such studies, but how are conclusions from those studies obtained? How can you interview just a few voters the day before an election and still determine fairly closely how HUN DREDS of THOUSANDS of voters will vote? That's statistics. You'll find it very interesting during this first course to see how a properly designed statistical study can achieve so much knowledge from such drastically incomplete information. It really is possible-statistics works! But HOW does it work? By the end of this course you'll have understood that and much more. Welcome to the enchanted forest | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Stochastisches Modell |0 (DE-588)4057633-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistische Schlussweise |0 (DE-588)4182963-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Statistische Schlussweise |0 (DE-588)4182963-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Stochastisches Modell |0 (DE-588)4057633-4 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4419-8540-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854693 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153089715863552 |
---|---|
any_adam_object | |
author | Creighton, J. H. C. |
author_facet | Creighton, J. H. C. |
author_role | aut |
author_sort | Creighton, J. H. C. |
author_variant | j h c c jhc jhcc |
building | Verbundindex |
bvnumber | BV042419276 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)724646642 (DE-599)BVBBV042419276 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4419-8540-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02922nmm a2200493zc 4500</leader><controlfield tag="001">BV042419276</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441985408</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4419-8540-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461264316</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-6431-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4419-8540-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)724646642</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419276</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Creighton, J. H. C.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A First Course in Probability Models and Statistical Inference</subfield><subfield code="c">by J. H. C. Creighton</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXXI, 719 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Texts in Statistics</subfield><subfield code="x">1431-875X</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Welcome to new territory: A course in probability models and statistical inference. The concept of probability is not new to you of course. You've encountered it since childhood in games of chance-card games, for example, or games with dice or coins. And you know about the "90% chance of rain" from weather reports. But once you get beyond simple expressions of probability into more subtle analysis, it's new territory. And very foreign territory it is. You must have encountered reports of statistical results in voter sur veys, opinion polls, and other such studies, but how are conclusions from those studies obtained? How can you interview just a few voters the day before an election and still determine fairly closely how HUN DREDS of THOUSANDS of voters will vote? That's statistics. You'll find it very interesting during this first course to see how a properly designed statistical study can achieve so much knowledge from such drastically incomplete information. It really is possible-statistics works! But HOW does it work? By the end of this course you'll have understood that and much more. Welcome to the enchanted forest</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastisches Modell</subfield><subfield code="0">(DE-588)4057633-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistische Schlussweise</subfield><subfield code="0">(DE-588)4182963-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Statistische Schlussweise</subfield><subfield code="0">(DE-588)4182963-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Stochastisches Modell</subfield><subfield code="0">(DE-588)4057633-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4419-8540-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854693</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419276 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9781441985408 9781461264316 |
issn | 1431-875X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854693 |
oclc_num | 724646642 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XXXI, 719 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Springer New York |
record_format | marc |
series2 | Springer Texts in Statistics |
spelling | Creighton, J. H. C. Verfasser aut A First Course in Probability Models and Statistical Inference by J. H. C. Creighton New York, NY Springer New York 1994 1 Online-Ressource (XXXI, 719 p) txt rdacontent c rdamedia cr rdacarrier Springer Texts in Statistics 1431-875X Welcome to new territory: A course in probability models and statistical inference. The concept of probability is not new to you of course. You've encountered it since childhood in games of chance-card games, for example, or games with dice or coins. And you know about the "90% chance of rain" from weather reports. But once you get beyond simple expressions of probability into more subtle analysis, it's new territory. And very foreign territory it is. You must have encountered reports of statistical results in voter sur veys, opinion polls, and other such studies, but how are conclusions from those studies obtained? How can you interview just a few voters the day before an election and still determine fairly closely how HUN DREDS of THOUSANDS of voters will vote? That's statistics. You'll find it very interesting during this first course to see how a properly designed statistical study can achieve so much knowledge from such drastically incomplete information. It really is possible-statistics works! But HOW does it work? By the end of this course you'll have understood that and much more. Welcome to the enchanted forest Mathematics Mathematics, general Mathematik Stochastisches Modell (DE-588)4057633-4 gnd rswk-swf Statistische Schlussweise (DE-588)4182963-3 gnd rswk-swf Statistische Schlussweise (DE-588)4182963-3 s 1\p DE-604 Stochastisches Modell (DE-588)4057633-4 s 2\p DE-604 https://doi.org/10.1007/978-1-4419-8540-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Creighton, J. H. C. A First Course in Probability Models and Statistical Inference Mathematics Mathematics, general Mathematik Stochastisches Modell (DE-588)4057633-4 gnd Statistische Schlussweise (DE-588)4182963-3 gnd |
subject_GND | (DE-588)4057633-4 (DE-588)4182963-3 |
title | A First Course in Probability Models and Statistical Inference |
title_auth | A First Course in Probability Models and Statistical Inference |
title_exact_search | A First Course in Probability Models and Statistical Inference |
title_full | A First Course in Probability Models and Statistical Inference by J. H. C. Creighton |
title_fullStr | A First Course in Probability Models and Statistical Inference by J. H. C. Creighton |
title_full_unstemmed | A First Course in Probability Models and Statistical Inference by J. H. C. Creighton |
title_short | A First Course in Probability Models and Statistical Inference |
title_sort | a first course in probability models and statistical inference |
topic | Mathematics Mathematics, general Mathematik Stochastisches Modell (DE-588)4057633-4 gnd Statistische Schlussweise (DE-588)4182963-3 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Stochastisches Modell Statistische Schlussweise |
url | https://doi.org/10.1007/978-1-4419-8540-8 |
work_keys_str_mv | AT creightonjhc afirstcourseinprobabilitymodelsandstatisticalinference |