Abelian Varieties:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1983
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | A belian Varieties has been out of print for a while. Since it was written, the subject has made some great advances, and Mumford's book giving a scheme theoretic treatment has appeared (D. Mum ford, Abelian Varieties, Tata Lecture Notes, Oxford University Press, London, 1970). However, some topics covered in my book were not covered in Mumford's; for instance, the construction of the Picard variety, the Albanese variety, some formulas concern ing numerical questions, the reciprocity law for correspondences and its application to Kummer theory, Chow's theory for the K/k-trace and image, and others. Several people have told me they still found a number of sections of my book useful. There fore I thank Springer-Verlag for the opportunity to keep the book in print. S. LANG v FOREWORD Pour des simplifications plus subs tan tielles, Ie developpement futur de la geometrie algebrique ne saurait manquer sans do ute d' en faire apparaitre. It is with considerable pleasure that we have seen in recent years the simplifications expected by Weil realize themselves, and it has seemed timely to incorporate them into a new book. We treat exclusively abelian varieties, and do not pretend to write a treatise on algebraic groups. Hence we have summarized in a first chapter all the general results on algebraic groups that are used in the sequel. They are all foundational results |
Beschreibung: | 1 Online-Ressource (XII, 256 p) |
ISBN: | 9781441985347 9780387908755 |
DOI: | 10.1007/978-1-4419-8534-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419274 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1983 |||| o||u| ||||||eng d | ||
020 | |a 9781441985347 |c Online |9 978-1-4419-8534-7 | ||
020 | |a 9780387908755 |c Print |9 978-0-387-90875-5 | ||
024 | 7 | |a 10.1007/978-1-4419-8534-7 |2 doi | |
035 | |a (OCoLC)1184375284 | ||
035 | |a (DE-599)BVBBV042419274 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.7 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Lang, Serge |e Verfasser |4 aut | |
245 | 1 | 0 | |a Abelian Varieties |c by Serge Lang |
264 | 1 | |a New York, NY |b Springer New York |c 1983 | |
300 | |a 1 Online-Ressource (XII, 256 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a A belian Varieties has been out of print for a while. Since it was written, the subject has made some great advances, and Mumford's book giving a scheme theoretic treatment has appeared (D. Mum ford, Abelian Varieties, Tata Lecture Notes, Oxford University Press, London, 1970). However, some topics covered in my book were not covered in Mumford's; for instance, the construction of the Picard variety, the Albanese variety, some formulas concern ing numerical questions, the reciprocity law for correspondences and its application to Kummer theory, Chow's theory for the K/k-trace and image, and others. Several people have told me they still found a number of sections of my book useful. There fore I thank Springer-Verlag for the opportunity to keep the book in print. S. LANG v FOREWORD Pour des simplifications plus subs tan tielles, Ie developpement futur de la geometrie algebrique ne saurait manquer sans do ute d' en faire apparaitre. It is with considerable pleasure that we have seen in recent years the simplifications expected by Weil realize themselves, and it has seemed timely to incorporate them into a new book. We treat exclusively abelian varieties, and do not pretend to write a treatise on algebraic groups. Hence we have summarized in a first chapter all the general results on algebraic groups that are used in the sequel. They are all foundational results | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Number theory | |
650 | 4 | |a Number Theory | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Abelsche Mannigfaltigkeit |0 (DE-588)4140992-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Varietät |g Mathematik |0 (DE-588)4325475-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Abelsche Mannigfaltigkeit |0 (DE-588)4140992-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Varietät |g Mathematik |0 (DE-588)4325475-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4419-8534-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854691 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153089713766400 |
---|---|
any_adam_object | |
author | Lang, Serge |
author_facet | Lang, Serge |
author_role | aut |
author_sort | Lang, Serge |
author_variant | s l sl |
building | Verbundindex |
bvnumber | BV042419274 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184375284 (DE-599)BVBBV042419274 |
dewey-full | 512.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7 |
dewey-search | 512.7 |
dewey-sort | 3512.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4419-8534-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03074nmm a2200493zc 4500</leader><controlfield tag="001">BV042419274</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1983 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441985347</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4419-8534-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387908755</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-90875-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4419-8534-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184375284</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419274</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lang, Serge</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Abelian Varieties</subfield><subfield code="c">by Serge Lang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1983</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 256 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">A belian Varieties has been out of print for a while. Since it was written, the subject has made some great advances, and Mumford's book giving a scheme theoretic treatment has appeared (D. Mum ford, Abelian Varieties, Tata Lecture Notes, Oxford University Press, London, 1970). However, some topics covered in my book were not covered in Mumford's; for instance, the construction of the Picard variety, the Albanese variety, some formulas concern ing numerical questions, the reciprocity law for correspondences and its application to Kummer theory, Chow's theory for the K/k-trace and image, and others. Several people have told me they still found a number of sections of my book useful. There fore I thank Springer-Verlag for the opportunity to keep the book in print. S. LANG v FOREWORD Pour des simplifications plus subs tan tielles, Ie developpement futur de la geometrie algebrique ne saurait manquer sans do ute d' en faire apparaitre. It is with considerable pleasure that we have seen in recent years the simplifications expected by Weil realize themselves, and it has seemed timely to incorporate them into a new book. We treat exclusively abelian varieties, and do not pretend to write a treatise on algebraic groups. Hence we have summarized in a first chapter all the general results on algebraic groups that are used in the sequel. They are all foundational results</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Abelsche Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4140992-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Varietät</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4325475-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Abelsche Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4140992-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Varietät</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4325475-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4419-8534-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854691</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419274 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9781441985347 9780387908755 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854691 |
oclc_num | 1184375284 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 256 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1983 |
publishDateSearch | 1983 |
publishDateSort | 1983 |
publisher | Springer New York |
record_format | marc |
spelling | Lang, Serge Verfasser aut Abelian Varieties by Serge Lang New York, NY Springer New York 1983 1 Online-Ressource (XII, 256 p) txt rdacontent c rdamedia cr rdacarrier A belian Varieties has been out of print for a while. Since it was written, the subject has made some great advances, and Mumford's book giving a scheme theoretic treatment has appeared (D. Mum ford, Abelian Varieties, Tata Lecture Notes, Oxford University Press, London, 1970). However, some topics covered in my book were not covered in Mumford's; for instance, the construction of the Picard variety, the Albanese variety, some formulas concern ing numerical questions, the reciprocity law for correspondences and its application to Kummer theory, Chow's theory for the K/k-trace and image, and others. Several people have told me they still found a number of sections of my book useful. There fore I thank Springer-Verlag for the opportunity to keep the book in print. S. LANG v FOREWORD Pour des simplifications plus subs tan tielles, Ie developpement futur de la geometrie algebrique ne saurait manquer sans do ute d' en faire apparaitre. It is with considerable pleasure that we have seen in recent years the simplifications expected by Weil realize themselves, and it has seemed timely to incorporate them into a new book. We treat exclusively abelian varieties, and do not pretend to write a treatise on algebraic groups. Hence we have summarized in a first chapter all the general results on algebraic groups that are used in the sequel. They are all foundational results Mathematics Number theory Number Theory Mathematik Abelsche Mannigfaltigkeit (DE-588)4140992-9 gnd rswk-swf Varietät Mathematik (DE-588)4325475-5 gnd rswk-swf Abelsche Mannigfaltigkeit (DE-588)4140992-9 s 1\p DE-604 Varietät Mathematik (DE-588)4325475-5 s 2\p DE-604 https://doi.org/10.1007/978-1-4419-8534-7 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Lang, Serge Abelian Varieties Mathematics Number theory Number Theory Mathematik Abelsche Mannigfaltigkeit (DE-588)4140992-9 gnd Varietät Mathematik (DE-588)4325475-5 gnd |
subject_GND | (DE-588)4140992-9 (DE-588)4325475-5 |
title | Abelian Varieties |
title_auth | Abelian Varieties |
title_exact_search | Abelian Varieties |
title_full | Abelian Varieties by Serge Lang |
title_fullStr | Abelian Varieties by Serge Lang |
title_full_unstemmed | Abelian Varieties by Serge Lang |
title_short | Abelian Varieties |
title_sort | abelian varieties |
topic | Mathematics Number theory Number Theory Mathematik Abelsche Mannigfaltigkeit (DE-588)4140992-9 gnd Varietät Mathematik (DE-588)4325475-5 gnd |
topic_facet | Mathematics Number theory Number Theory Mathematik Abelsche Mannigfaltigkeit Varietät Mathematik |
url | https://doi.org/10.1007/978-1-4419-8534-7 |
work_keys_str_mv | AT langserge abelianvarieties |