Iterative Methods for Approximate Solution of Inverse Problems:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
2004
|
Schriftenreihe: | Mathematics and Its Applications
577 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This volume presents a unified approach to constructing iterative methods for solving irregular operator equations and provides rigorous theoretical analysis for several classes of these methods. The analysis of methods includes convergence theorems as well as necessary and sufficient conditions for their convergence at a given rate. The principal groups of methods studied in the book are iterative processes based on the technique of universal linear approximations, stable gradient-type processes, and methods of stable continuous approximations. Compared to existing monographs and textbooks on ill-posed problems, the main distinguishing feature of the presented approach is that it doesn’t require any structural conditions on equations under consideration, except for standard smoothness conditions. This allows to obtain in a uniform style stable iterative methods applicable to wide classes of nonlinear inverse problems. Practical efficiency of suggested algorithms is illustrated in application to inverse problems of potential theory and acoustic scattering. The volume can be read by anyone with a basic knowledge of functional analysis. The book will be of interest to applied mathematicians and specialists in mathematical modeling and inverse problems |
Beschreibung: | 1 Online-Ressource (XV, 291 p) |
ISBN: | 9781402031229 9781402031212 |
DOI: | 10.1007/978-1-4020-3122-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042419252 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2004 |||| o||u| ||||||eng d | ||
020 | |a 9781402031229 |c Online |9 978-1-4020-3122-9 | ||
020 | |a 9781402031212 |c Print |9 978-1-4020-3121-2 | ||
024 | 7 | |a 10.1007/978-1-4020-3122-9 |2 doi | |
035 | |a (OCoLC)838515029 | ||
035 | |a (DE-599)BVBBV042419252 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 518 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Bakushinsky, A. B. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Iterative Methods for Approximate Solution of Inverse Problems |c by A. B. Bakushinsky, M. Yu. Kokurin |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 2004 | |
300 | |a 1 Online-Ressource (XV, 291 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics and Its Applications |v 577 | |
500 | |a This volume presents a unified approach to constructing iterative methods for solving irregular operator equations and provides rigorous theoretical analysis for several classes of these methods. The analysis of methods includes convergence theorems as well as necessary and sufficient conditions for their convergence at a given rate. The principal groups of methods studied in the book are iterative processes based on the technique of universal linear approximations, stable gradient-type processes, and methods of stable continuous approximations. Compared to existing monographs and textbooks on ill-posed problems, the main distinguishing feature of the presented approach is that it doesn’t require any structural conditions on equations under consideration, except for standard smoothness conditions. This allows to obtain in a uniform style stable iterative methods applicable to wide classes of nonlinear inverse problems. Practical efficiency of suggested algorithms is illustrated in application to inverse problems of potential theory and acoustic scattering. The volume can be read by anyone with a basic knowledge of functional analysis. The book will be of interest to applied mathematicians and specialists in mathematical modeling and inverse problems | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Integral equations | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Algorithms | |
650 | 4 | |a Numerical analysis | |
650 | 4 | |a Numerical Analysis | |
650 | 4 | |a Integral Equations | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Mathematical Modeling and Industrial Mathematics | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Iterationstheorie |0 (DE-588)4027855-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Iterationstheorie |0 (DE-588)4027855-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Kokurin, M. Yu |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4020-3122-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854669 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153089684406272 |
---|---|
any_adam_object | |
author | Bakushinsky, A. B. |
author_facet | Bakushinsky, A. B. |
author_role | aut |
author_sort | Bakushinsky, A. B. |
author_variant | a b b ab abb |
building | Verbundindex |
bvnumber | BV042419252 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)838515029 (DE-599)BVBBV042419252 |
dewey-full | 518 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 518 - Numerical analysis |
dewey-raw | 518 |
dewey-search | 518 |
dewey-sort | 3518 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4020-3122-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03132nmm a2200541zcb4500</leader><controlfield tag="001">BV042419252</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781402031229</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4020-3122-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781402031212</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4020-3121-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4020-3122-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)838515029</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419252</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">518</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bakushinsky, A. B.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Iterative Methods for Approximate Solution of Inverse Problems</subfield><subfield code="c">by A. B. Bakushinsky, M. Yu. Kokurin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 291 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">577</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This volume presents a unified approach to constructing iterative methods for solving irregular operator equations and provides rigorous theoretical analysis for several classes of these methods. The analysis of methods includes convergence theorems as well as necessary and sufficient conditions for their convergence at a given rate. The principal groups of methods studied in the book are iterative processes based on the technique of universal linear approximations, stable gradient-type processes, and methods of stable continuous approximations. Compared to existing monographs and textbooks on ill-posed problems, the main distinguishing feature of the presented approach is that it doesn’t require any structural conditions on equations under consideration, except for standard smoothness conditions. This allows to obtain in a uniform style stable iterative methods applicable to wide classes of nonlinear inverse problems. Practical efficiency of suggested algorithms is illustrated in application to inverse problems of potential theory and acoustic scattering. The volume can be read by anyone with a basic knowledge of functional analysis. The book will be of interest to applied mathematicians and specialists in mathematical modeling and inverse problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Modeling and Industrial Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Iterationstheorie</subfield><subfield code="0">(DE-588)4027855-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Iterationstheorie</subfield><subfield code="0">(DE-588)4027855-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kokurin, M. Yu</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4020-3122-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854669</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419252 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9781402031229 9781402031212 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854669 |
oclc_num | 838515029 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XV, 291 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Mathematics and Its Applications |
spelling | Bakushinsky, A. B. Verfasser aut Iterative Methods for Approximate Solution of Inverse Problems by A. B. Bakushinsky, M. Yu. Kokurin Dordrecht Springer Netherlands 2004 1 Online-Ressource (XV, 291 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 577 This volume presents a unified approach to constructing iterative methods for solving irregular operator equations and provides rigorous theoretical analysis for several classes of these methods. The analysis of methods includes convergence theorems as well as necessary and sufficient conditions for their convergence at a given rate. The principal groups of methods studied in the book are iterative processes based on the technique of universal linear approximations, stable gradient-type processes, and methods of stable continuous approximations. Compared to existing monographs and textbooks on ill-posed problems, the main distinguishing feature of the presented approach is that it doesn’t require any structural conditions on equations under consideration, except for standard smoothness conditions. This allows to obtain in a uniform style stable iterative methods applicable to wide classes of nonlinear inverse problems. Practical efficiency of suggested algorithms is illustrated in application to inverse problems of potential theory and acoustic scattering. The volume can be read by anyone with a basic knowledge of functional analysis. The book will be of interest to applied mathematicians and specialists in mathematical modeling and inverse problems Mathematics Integral equations Differential equations, partial Algorithms Numerical analysis Numerical Analysis Integral Equations Partial Differential Equations Mathematical Modeling and Industrial Mathematics Mathematik Iterationstheorie (DE-588)4027855-4 gnd rswk-swf Iterationstheorie (DE-588)4027855-4 s 1\p DE-604 Kokurin, M. Yu Sonstige oth https://doi.org/10.1007/978-1-4020-3122-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Bakushinsky, A. B. Iterative Methods for Approximate Solution of Inverse Problems Mathematics Integral equations Differential equations, partial Algorithms Numerical analysis Numerical Analysis Integral Equations Partial Differential Equations Mathematical Modeling and Industrial Mathematics Mathematik Iterationstheorie (DE-588)4027855-4 gnd |
subject_GND | (DE-588)4027855-4 |
title | Iterative Methods for Approximate Solution of Inverse Problems |
title_auth | Iterative Methods for Approximate Solution of Inverse Problems |
title_exact_search | Iterative Methods for Approximate Solution of Inverse Problems |
title_full | Iterative Methods for Approximate Solution of Inverse Problems by A. B. Bakushinsky, M. Yu. Kokurin |
title_fullStr | Iterative Methods for Approximate Solution of Inverse Problems by A. B. Bakushinsky, M. Yu. Kokurin |
title_full_unstemmed | Iterative Methods for Approximate Solution of Inverse Problems by A. B. Bakushinsky, M. Yu. Kokurin |
title_short | Iterative Methods for Approximate Solution of Inverse Problems |
title_sort | iterative methods for approximate solution of inverse problems |
topic | Mathematics Integral equations Differential equations, partial Algorithms Numerical analysis Numerical Analysis Integral Equations Partial Differential Equations Mathematical Modeling and Industrial Mathematics Mathematik Iterationstheorie (DE-588)4027855-4 gnd |
topic_facet | Mathematics Integral equations Differential equations, partial Algorithms Numerical analysis Numerical Analysis Integral Equations Partial Differential Equations Mathematical Modeling and Industrial Mathematics Mathematik Iterationstheorie |
url | https://doi.org/10.1007/978-1-4020-3122-9 |
work_keys_str_mv | AT bakushinskyab iterativemethodsforapproximatesolutionofinverseproblems AT kokurinmyu iterativemethodsforapproximatesolutionofinverseproblems |