Fourier Analysis and Approximation of Functions:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
2004
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In Fourier Analysis and Approximation of Functions basics of classical Fourier Analysis are given as well as those of approximation by polynomials, splines and entire functions of exponential type. In Chapter 1 which has an introductory nature, theorems on convergence, in that or another sense, of integral operators are given. In Chapter 2 basic properties of simple and multiple Fourier series are discussed, while in Chapter 3 those of Fourier integrals are studied. The first three chapters as well as partially Chapter 4 and classical Wiener, Bochner, Bernstein, Khintchin, and Beurling theorems in Chapter 6 might be interesting and available to all familiar with fundamentals of integration theory and elements of Complex Analysis and Operator Theory. Applied mathematicians interested in harmonic analysis and/or numerical methods based on ideas of Approximation Theory are among them. In Chapters 6-11 very recent results are sometimes given in certain directions. Many of these results have never appeared as a book or certain consistent part of a book and can be found only in periodics; looking for them in numerous journals might be quite onerous, thus this book may work as a reference source. The methods used in the book are those of classical analysis, Fourier Analysis in finite-dimensional Euclidean space Diophantine Analysis, and random choice |
Beschreibung: | 1 Online-Ressource (XIV, 586 p) |
ISBN: | 9781402028762 9789048166411 |
DOI: | 10.1007/978-1-4020-2876-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419250 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2004 |||| o||u| ||||||eng d | ||
020 | |a 9781402028762 |c Online |9 978-1-4020-2876-2 | ||
020 | |a 9789048166411 |c Print |9 978-90-481-6641-1 | ||
024 | 7 | |a 10.1007/978-1-4020-2876-2 |2 doi | |
035 | |a (OCoLC)1184497539 | ||
035 | |a (DE-599)BVBBV042419250 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 511.4 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Trigub, Roald M. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Fourier Analysis and Approximation of Functions |c by Roald M. Trigub, Eduard S. Bellinsky |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 2004 | |
300 | |a 1 Online-Ressource (XIV, 586 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a In Fourier Analysis and Approximation of Functions basics of classical Fourier Analysis are given as well as those of approximation by polynomials, splines and entire functions of exponential type. In Chapter 1 which has an introductory nature, theorems on convergence, in that or another sense, of integral operators are given. In Chapter 2 basic properties of simple and multiple Fourier series are discussed, while in Chapter 3 those of Fourier integrals are studied. The first three chapters as well as partially Chapter 4 and classical Wiener, Bochner, Bernstein, Khintchin, and Beurling theorems in Chapter 6 might be interesting and available to all familiar with fundamentals of integration theory and elements of Complex Analysis and Operator Theory. Applied mathematicians interested in harmonic analysis and/or numerical methods based on ideas of Approximation Theory are among them. In Chapters 6-11 very recent results are sometimes given in certain directions. Many of these results have never appeared as a book or certain consistent part of a book and can be found only in periodics; looking for them in numerous journals might be quite onerous, thus this book may work as a reference source. The methods used in the book are those of classical analysis, Fourier Analysis in finite-dimensional Euclidean space Diophantine Analysis, and random choice | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Fourier analysis | |
650 | 4 | |a Functional analysis | |
650 | 4 | |a Sequences (Mathematics) | |
650 | 4 | |a Approximations and Expansions | |
650 | 4 | |a Fourier Analysis | |
650 | 4 | |a Sequences, Series, Summability | |
650 | 4 | |a Measure and Integration | |
650 | 4 | |a Functional Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Approximationstheorie |0 (DE-588)4120913-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Harmonische Analyse |0 (DE-588)4023453-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Approximation |0 (DE-588)4002498-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Harmonische Analyse |0 (DE-588)4023453-8 |D s |
689 | 0 | 1 | |a Approximation |0 (DE-588)4002498-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Harmonische Analyse |0 (DE-588)4023453-8 |D s |
689 | 1 | 1 | |a Approximationstheorie |0 (DE-588)4120913-8 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Bellinsky, Eduard S. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4020-2876-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854667 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153089677066240 |
---|---|
any_adam_object | |
author | Trigub, Roald M. |
author_facet | Trigub, Roald M. |
author_role | aut |
author_sort | Trigub, Roald M. |
author_variant | r m t rm rmt |
building | Verbundindex |
bvnumber | BV042419250 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184497539 (DE-599)BVBBV042419250 |
dewey-full | 511.4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.4 |
dewey-search | 511.4 |
dewey-sort | 3511.4 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4020-2876-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03576nmm a2200613zc 4500</leader><controlfield tag="001">BV042419250</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781402028762</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4020-2876-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048166411</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-6641-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4020-2876-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184497539</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419250</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.4</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Trigub, Roald M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fourier Analysis and Approximation of Functions</subfield><subfield code="c">by Roald M. Trigub, Eduard S. Bellinsky</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 586 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In Fourier Analysis and Approximation of Functions basics of classical Fourier Analysis are given as well as those of approximation by polynomials, splines and entire functions of exponential type. In Chapter 1 which has an introductory nature, theorems on convergence, in that or another sense, of integral operators are given. In Chapter 2 basic properties of simple and multiple Fourier series are discussed, while in Chapter 3 those of Fourier integrals are studied. The first three chapters as well as partially Chapter 4 and classical Wiener, Bochner, Bernstein, Khintchin, and Beurling theorems in Chapter 6 might be interesting and available to all familiar with fundamentals of integration theory and elements of Complex Analysis and Operator Theory. Applied mathematicians interested in harmonic analysis and/or numerical methods based on ideas of Approximation Theory are among them. In Chapters 6-11 very recent results are sometimes given in certain directions. Many of these results have never appeared as a book or certain consistent part of a book and can be found only in periodics; looking for them in numerous journals might be quite onerous, thus this book may work as a reference source. The methods used in the book are those of classical analysis, Fourier Analysis in finite-dimensional Euclidean space Diophantine Analysis, and random choice</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sequences (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximations and Expansions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sequences, Series, Summability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Measure and Integration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Approximationstheorie</subfield><subfield code="0">(DE-588)4120913-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Approximation</subfield><subfield code="0">(DE-588)4002498-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Approximation</subfield><subfield code="0">(DE-588)4002498-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Approximationstheorie</subfield><subfield code="0">(DE-588)4120913-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bellinsky, Eduard S.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4020-2876-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854667</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419250 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9781402028762 9789048166411 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854667 |
oclc_num | 1184497539 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIV, 586 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Springer Netherlands |
record_format | marc |
spelling | Trigub, Roald M. Verfasser aut Fourier Analysis and Approximation of Functions by Roald M. Trigub, Eduard S. Bellinsky Dordrecht Springer Netherlands 2004 1 Online-Ressource (XIV, 586 p) txt rdacontent c rdamedia cr rdacarrier In Fourier Analysis and Approximation of Functions basics of classical Fourier Analysis are given as well as those of approximation by polynomials, splines and entire functions of exponential type. In Chapter 1 which has an introductory nature, theorems on convergence, in that or another sense, of integral operators are given. In Chapter 2 basic properties of simple and multiple Fourier series are discussed, while in Chapter 3 those of Fourier integrals are studied. The first three chapters as well as partially Chapter 4 and classical Wiener, Bochner, Bernstein, Khintchin, and Beurling theorems in Chapter 6 might be interesting and available to all familiar with fundamentals of integration theory and elements of Complex Analysis and Operator Theory. Applied mathematicians interested in harmonic analysis and/or numerical methods based on ideas of Approximation Theory are among them. In Chapters 6-11 very recent results are sometimes given in certain directions. Many of these results have never appeared as a book or certain consistent part of a book and can be found only in periodics; looking for them in numerous journals might be quite onerous, thus this book may work as a reference source. The methods used in the book are those of classical analysis, Fourier Analysis in finite-dimensional Euclidean space Diophantine Analysis, and random choice Mathematics Fourier analysis Functional analysis Sequences (Mathematics) Approximations and Expansions Fourier Analysis Sequences, Series, Summability Measure and Integration Functional Analysis Mathematik Approximationstheorie (DE-588)4120913-8 gnd rswk-swf Harmonische Analyse (DE-588)4023453-8 gnd rswk-swf Approximation (DE-588)4002498-2 gnd rswk-swf Harmonische Analyse (DE-588)4023453-8 s Approximation (DE-588)4002498-2 s 1\p DE-604 Approximationstheorie (DE-588)4120913-8 s 2\p DE-604 Bellinsky, Eduard S. Sonstige oth https://doi.org/10.1007/978-1-4020-2876-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Trigub, Roald M. Fourier Analysis and Approximation of Functions Mathematics Fourier analysis Functional analysis Sequences (Mathematics) Approximations and Expansions Fourier Analysis Sequences, Series, Summability Measure and Integration Functional Analysis Mathematik Approximationstheorie (DE-588)4120913-8 gnd Harmonische Analyse (DE-588)4023453-8 gnd Approximation (DE-588)4002498-2 gnd |
subject_GND | (DE-588)4120913-8 (DE-588)4023453-8 (DE-588)4002498-2 |
title | Fourier Analysis and Approximation of Functions |
title_auth | Fourier Analysis and Approximation of Functions |
title_exact_search | Fourier Analysis and Approximation of Functions |
title_full | Fourier Analysis and Approximation of Functions by Roald M. Trigub, Eduard S. Bellinsky |
title_fullStr | Fourier Analysis and Approximation of Functions by Roald M. Trigub, Eduard S. Bellinsky |
title_full_unstemmed | Fourier Analysis and Approximation of Functions by Roald M. Trigub, Eduard S. Bellinsky |
title_short | Fourier Analysis and Approximation of Functions |
title_sort | fourier analysis and approximation of functions |
topic | Mathematics Fourier analysis Functional analysis Sequences (Mathematics) Approximations and Expansions Fourier Analysis Sequences, Series, Summability Measure and Integration Functional Analysis Mathematik Approximationstheorie (DE-588)4120913-8 gnd Harmonische Analyse (DE-588)4023453-8 gnd Approximation (DE-588)4002498-2 gnd |
topic_facet | Mathematics Fourier analysis Functional analysis Sequences (Mathematics) Approximations and Expansions Fourier Analysis Sequences, Series, Summability Measure and Integration Functional Analysis Mathematik Approximationstheorie Harmonische Analyse Approximation |
url | https://doi.org/10.1007/978-1-4020-2876-2 |
work_keys_str_mv | AT trigubroaldm fourieranalysisandapproximationoffunctions AT bellinskyeduards fourieranalysisandapproximationoffunctions |