Multifrequency Oscillations of Nonlinear Systems:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
2004
|
Schriftenreihe: | Mathematics and Its Applications
567 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In contrast to other books devoted to the averaging method and the method of integral manifolds, in the present book we study oscillation systems with many varying frequencies. In the process of evolution, systems of this type can pass from one resonance state into another. This fact considerably complicates the investigation of nonlinear oscillations. In the present monograph, a new approach based on exact uniform estimates of oscillation integrals is proposed. On the basis of this approach, numerous completely new results on the justification of the averaging method and its applications are obtained and the integral manifolds of resonance oscillation systems are studied. This book is intended for a wide circle of research workers, experts, and engineers interested in oscillation processes, as well as for students and post-graduate students specialized in ordinary differential equations |
Beschreibung: | 1 Online-Ressource (VI, 317 p) |
ISBN: | 9781402020315 9781402020308 |
DOI: | 10.1007/1-4020-2031-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042419236 | ||
003 | DE-604 | ||
005 | 20201205 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2004 |||| o||u| ||||||eng d | ||
020 | |a 9781402020315 |c Online |9 978-1-4020-2031-5 | ||
020 | |a 9781402020308 |c Print |9 978-1-4020-2030-8 | ||
024 | 7 | |a 10.1007/1-4020-2031-7 |2 doi | |
035 | |a (OCoLC)905438049 | ||
035 | |a (DE-599)BVBBV042419236 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.352 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Samojlenko, Anatolij M. |d 1938-2020 |e Verfasser |0 (DE-588)108416569 |4 aut | |
245 | 1 | 0 | |a Multifrequency Oscillations of Nonlinear Systems |c by A. Samoilenko, R. Petryshyn |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 2004 | |
300 | |a 1 Online-Ressource (VI, 317 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics and Its Applications |v 567 | |
500 | |a In contrast to other books devoted to the averaging method and the method of integral manifolds, in the present book we study oscillation systems with many varying frequencies. In the process of evolution, systems of this type can pass from one resonance state into another. This fact considerably complicates the investigation of nonlinear oscillations. In the present monograph, a new approach based on exact uniform estimates of oscillation integrals is proposed. On the basis of this approach, numerous completely new results on the justification of the averaging method and its applications are obtained and the integral manifolds of resonance oscillation systems are studied. This book is intended for a wide circle of research workers, experts, and engineers interested in oscillation processes, as well as for students and post-graduate students specialized in ordinary differential equations | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Fourier analysis | |
650 | 4 | |a Functional analysis | |
650 | 4 | |a Differential Equations | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Ordinary Differential Equations | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Fourier Analysis | |
650 | 4 | |a Functional Analysis | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Mathematik | |
700 | 1 | |a Petryšyn, Roman Ivanovyč |d 1953- |e Sonstige |0 (DE-588)1067790039 |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/1-4020-2031-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854653 |
Datensatz im Suchindex
_version_ | 1804153089621491712 |
---|---|
any_adam_object | |
author | Samojlenko, Anatolij M. 1938-2020 |
author_GND | (DE-588)108416569 (DE-588)1067790039 |
author_facet | Samojlenko, Anatolij M. 1938-2020 |
author_role | aut |
author_sort | Samojlenko, Anatolij M. 1938-2020 |
author_variant | a m s am ams |
building | Verbundindex |
bvnumber | BV042419236 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)905438049 (DE-599)BVBBV042419236 |
dewey-full | 515.352 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.352 |
dewey-search | 515.352 |
dewey-sort | 3515.352 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/1-4020-2031-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02610nmm a2200505zcb4500</leader><controlfield tag="001">BV042419236</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201205 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781402020315</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4020-2031-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781402020308</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4020-2030-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/1-4020-2031-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)905438049</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419236</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.352</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Samojlenko, Anatolij M.</subfield><subfield code="d">1938-2020</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)108416569</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multifrequency Oscillations of Nonlinear Systems</subfield><subfield code="c">by A. Samoilenko, R. Petryshyn</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VI, 317 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">567</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In contrast to other books devoted to the averaging method and the method of integral manifolds, in the present book we study oscillation systems with many varying frequencies. In the process of evolution, systems of this type can pass from one resonance state into another. This fact considerably complicates the investigation of nonlinear oscillations. In the present monograph, a new approach based on exact uniform estimates of oscillation integrals is proposed. On the basis of this approach, numerous completely new results on the justification of the averaging method and its applications are obtained and the integral manifolds of resonance oscillation systems are studied. This book is intended for a wide circle of research workers, experts, and engineers interested in oscillation processes, as well as for students and post-graduate students specialized in ordinary differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordinary Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Petryšyn, Roman Ivanovyč</subfield><subfield code="d">1953-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1067790039</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/1-4020-2031-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854653</subfield></datafield></record></collection> |
id | DE-604.BV042419236 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9781402020315 9781402020308 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854653 |
oclc_num | 905438049 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VI, 317 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Mathematics and Its Applications |
spelling | Samojlenko, Anatolij M. 1938-2020 Verfasser (DE-588)108416569 aut Multifrequency Oscillations of Nonlinear Systems by A. Samoilenko, R. Petryshyn Dordrecht Springer Netherlands 2004 1 Online-Ressource (VI, 317 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 567 In contrast to other books devoted to the averaging method and the method of integral manifolds, in the present book we study oscillation systems with many varying frequencies. In the process of evolution, systems of this type can pass from one resonance state into another. This fact considerably complicates the investigation of nonlinear oscillations. In the present monograph, a new approach based on exact uniform estimates of oscillation integrals is proposed. On the basis of this approach, numerous completely new results on the justification of the averaging method and its applications are obtained and the integral manifolds of resonance oscillation systems are studied. This book is intended for a wide circle of research workers, experts, and engineers interested in oscillation processes, as well as for students and post-graduate students specialized in ordinary differential equations Mathematics Fourier analysis Functional analysis Differential Equations Differential equations, partial Ordinary Differential Equations Partial Differential Equations Fourier Analysis Functional Analysis Applications of Mathematics Mathematik Petryšyn, Roman Ivanovyč 1953- Sonstige (DE-588)1067790039 oth https://doi.org/10.1007/1-4020-2031-7 Verlag Volltext |
spellingShingle | Samojlenko, Anatolij M. 1938-2020 Multifrequency Oscillations of Nonlinear Systems Mathematics Fourier analysis Functional analysis Differential Equations Differential equations, partial Ordinary Differential Equations Partial Differential Equations Fourier Analysis Functional Analysis Applications of Mathematics Mathematik |
title | Multifrequency Oscillations of Nonlinear Systems |
title_auth | Multifrequency Oscillations of Nonlinear Systems |
title_exact_search | Multifrequency Oscillations of Nonlinear Systems |
title_full | Multifrequency Oscillations of Nonlinear Systems by A. Samoilenko, R. Petryshyn |
title_fullStr | Multifrequency Oscillations of Nonlinear Systems by A. Samoilenko, R. Petryshyn |
title_full_unstemmed | Multifrequency Oscillations of Nonlinear Systems by A. Samoilenko, R. Petryshyn |
title_short | Multifrequency Oscillations of Nonlinear Systems |
title_sort | multifrequency oscillations of nonlinear systems |
topic | Mathematics Fourier analysis Functional analysis Differential Equations Differential equations, partial Ordinary Differential Equations Partial Differential Equations Fourier Analysis Functional Analysis Applications of Mathematics Mathematik |
topic_facet | Mathematics Fourier analysis Functional analysis Differential Equations Differential equations, partial Ordinary Differential Equations Partial Differential Equations Fourier Analysis Functional Analysis Applications of Mathematics Mathematik |
url | https://doi.org/10.1007/1-4020-2031-7 |
work_keys_str_mv | AT samojlenkoanatolijm multifrequencyoscillationsofnonlinearsystems AT petrysynromanivanovyc multifrequencyoscillationsofnonlinearsystems |