Resolution of Curve and Surface Singularities: in Characteristic Zero
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
2004
|
Schriftenreihe: | Algebras and Applications
4 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The Curves The Point of View of Max Noether Probably the oldest references to the problem of resolution of singularities are found in Max Noether's works on plane curves [cf. [148], [149]]. And probably the origin of the problem was to have a formula to compute the genus of a plane curve. The genus is the most useful birational invariant of a curve in classical projective geometry. It was long known that, for a plane curve of degree n having l m ordinary singular points with respective multiplicities ri, i E {1, . . . , m}, the genus p of the curve is given by the formula = (n - l)(n - 2) _ ~ "r. (r. _ 1) P 2 2 L. . ,. •• . Of course, the problem now arises: how to compute the genus of a plane curve having some non-ordinary singularities. This leads to the natural question: can we birationally transform any (singular) plane curve into another one having only ordinary singularities? The answer is positive. Let us give a flavor (without proofs) 2 on how Noether did it • To solve the problem, it is enough to consider a special kind of Cremona trans formations, namely quadratic transformations of the projective plane. Let ~ be a linear system of conics with three non-collinear base points r = {Ao, AI, A }, 2 and take a projective frame of the type {Ao, AI, A ; U} |
Beschreibung: | 1 Online-Ressource (XXII, 486 p) |
ISBN: | 9781402020292 9789048165735 |
ISSN: | 1572-5553 |
DOI: | 10.1007/978-1-4020-2029-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042419235 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2004 |||| o||u| ||||||eng d | ||
020 | |a 9781402020292 |c Online |9 978-1-4020-2029-2 | ||
020 | |a 9789048165735 |c Print |9 978-90-481-6573-5 | ||
024 | 7 | |a 10.1007/978-1-4020-2029-2 |2 doi | |
035 | |a (OCoLC)863965740 | ||
035 | |a (DE-599)BVBBV042419235 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516.35 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Kiyek, K. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Resolution of Curve and Surface Singularities |b in Characteristic Zero |c by K. Kiyek, J. L. Vicente |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 2004 | |
300 | |a 1 Online-Ressource (XXII, 486 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Algebras and Applications |v 4 |x 1572-5553 | |
500 | |a The Curves The Point of View of Max Noether Probably the oldest references to the problem of resolution of singularities are found in Max Noether's works on plane curves [cf. [148], [149]]. And probably the origin of the problem was to have a formula to compute the genus of a plane curve. The genus is the most useful birational invariant of a curve in classical projective geometry. It was long known that, for a plane curve of degree n having l m ordinary singular points with respective multiplicities ri, i E {1, . . . , m}, the genus p of the curve is given by the formula = (n - l)(n - 2) _ ~ "r. (r. _ 1) P 2 2 L. . ,. •• . Of course, the problem now arises: how to compute the genus of a plane curve having some non-ordinary singularities. This leads to the natural question: can we birationally transform any (singular) plane curve into another one having only ordinary singularities? The answer is positive. Let us give a flavor (without proofs) 2 on how Noether did it • To solve the problem, it is enough to consider a special kind of Cremona trans formations, namely quadratic transformations of the projective plane. Let ~ be a linear system of conics with three non-collinear base points r = {Ao, AI, A }, 2 and take a projective frame of the type {Ao, AI, A ; U} | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry, algebraic | |
650 | 4 | |a Algebra | |
650 | 4 | |a Field theory (Physics) | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Algebraic Geometry | |
650 | 4 | |a Commutative Rings and Algebras | |
650 | 4 | |a Field Theory and Polynomials | |
650 | 4 | |a Several Complex Variables and Analytic Spaces | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Charakteristik Null |0 (DE-588)4472918-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fläche |0 (DE-588)4129864-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Singularität |g Mathematik |0 (DE-588)4077459-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kurve |0 (DE-588)4033824-1 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4006432-3 |a Bibliografie |2 gnd-content | |
689 | 0 | 0 | |a Singularität |g Mathematik |0 (DE-588)4077459-4 |D s |
689 | 0 | 1 | |a Kurve |0 (DE-588)4033824-1 |D s |
689 | 0 | 2 | |a Fläche |0 (DE-588)4129864-0 |D s |
689 | 0 | 3 | |a Charakteristik Null |0 (DE-588)4472918-2 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
700 | 1 | |a Vicente, J. L. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4020-2029-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854652 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153089630928896 |
---|---|
any_adam_object | |
author | Kiyek, K. |
author_facet | Kiyek, K. |
author_role | aut |
author_sort | Kiyek, K. |
author_variant | k k kk |
building | Verbundindex |
bvnumber | BV042419235 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863965740 (DE-599)BVBBV042419235 |
dewey-full | 516.35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.35 |
dewey-search | 516.35 |
dewey-sort | 3516.35 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4020-2029-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03652nmm a2200637zcb4500</leader><controlfield tag="001">BV042419235</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781402020292</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4020-2029-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048165735</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-6573-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4020-2029-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863965740</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419235</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.35</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kiyek, K.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Resolution of Curve and Surface Singularities</subfield><subfield code="b">in Characteristic Zero</subfield><subfield code="c">by K. Kiyek, J. L. Vicente</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXII, 486 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Algebras and Applications</subfield><subfield code="v">4</subfield><subfield code="x">1572-5553</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The Curves The Point of View of Max Noether Probably the oldest references to the problem of resolution of singularities are found in Max Noether's works on plane curves [cf. [148], [149]]. And probably the origin of the problem was to have a formula to compute the genus of a plane curve. The genus is the most useful birational invariant of a curve in classical projective geometry. It was long known that, for a plane curve of degree n having l m ordinary singular points with respective multiplicities ri, i E {1, . . . , m}, the genus p of the curve is given by the formula = (n - l)(n - 2) _ ~ "r. (r. _ 1) P 2 2 L. . ,. •• . Of course, the problem now arises: how to compute the genus of a plane curve having some non-ordinary singularities. This leads to the natural question: can we birationally transform any (singular) plane curve into another one having only ordinary singularities? The answer is positive. Let us give a flavor (without proofs) 2 on how Noether did it • To solve the problem, it is enough to consider a special kind of Cremona trans formations, namely quadratic transformations of the projective plane. Let ~ be a linear system of conics with three non-collinear base points r = {Ao, AI, A }, 2 and take a projective frame of the type {Ao, AI, A ; U}</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field theory (Physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Commutative Rings and Algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field Theory and Polynomials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Several Complex Variables and Analytic Spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Charakteristik Null</subfield><subfield code="0">(DE-588)4472918-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fläche</subfield><subfield code="0">(DE-588)4129864-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Singularität</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4077459-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kurve</subfield><subfield code="0">(DE-588)4033824-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4006432-3</subfield><subfield code="a">Bibliografie</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Singularität</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4077459-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kurve</subfield><subfield code="0">(DE-588)4033824-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Fläche</subfield><subfield code="0">(DE-588)4129864-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Charakteristik Null</subfield><subfield code="0">(DE-588)4472918-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vicente, J. L.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4020-2029-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854652</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4006432-3 Bibliografie gnd-content |
genre_facet | Bibliografie |
id | DE-604.BV042419235 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9781402020292 9789048165735 |
issn | 1572-5553 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854652 |
oclc_num | 863965740 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XXII, 486 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Algebras and Applications |
spelling | Kiyek, K. Verfasser aut Resolution of Curve and Surface Singularities in Characteristic Zero by K. Kiyek, J. L. Vicente Dordrecht Springer Netherlands 2004 1 Online-Ressource (XXII, 486 p) txt rdacontent c rdamedia cr rdacarrier Algebras and Applications 4 1572-5553 The Curves The Point of View of Max Noether Probably the oldest references to the problem of resolution of singularities are found in Max Noether's works on plane curves [cf. [148], [149]]. And probably the origin of the problem was to have a formula to compute the genus of a plane curve. The genus is the most useful birational invariant of a curve in classical projective geometry. It was long known that, for a plane curve of degree n having l m ordinary singular points with respective multiplicities ri, i E {1, . . . , m}, the genus p of the curve is given by the formula = (n - l)(n - 2) _ ~ "r. (r. _ 1) P 2 2 L. . ,. •• . Of course, the problem now arises: how to compute the genus of a plane curve having some non-ordinary singularities. This leads to the natural question: can we birationally transform any (singular) plane curve into another one having only ordinary singularities? The answer is positive. Let us give a flavor (without proofs) 2 on how Noether did it • To solve the problem, it is enough to consider a special kind of Cremona trans formations, namely quadratic transformations of the projective plane. Let ~ be a linear system of conics with three non-collinear base points r = {Ao, AI, A }, 2 and take a projective frame of the type {Ao, AI, A ; U} Mathematics Geometry, algebraic Algebra Field theory (Physics) Differential equations, partial Algebraic Geometry Commutative Rings and Algebras Field Theory and Polynomials Several Complex Variables and Analytic Spaces Mathematik Charakteristik Null (DE-588)4472918-2 gnd rswk-swf Fläche (DE-588)4129864-0 gnd rswk-swf Singularität Mathematik (DE-588)4077459-4 gnd rswk-swf Kurve (DE-588)4033824-1 gnd rswk-swf 1\p (DE-588)4006432-3 Bibliografie gnd-content Singularität Mathematik (DE-588)4077459-4 s Kurve (DE-588)4033824-1 s Fläche (DE-588)4129864-0 s Charakteristik Null (DE-588)4472918-2 s 2\p DE-604 Vicente, J. L. Sonstige oth https://doi.org/10.1007/978-1-4020-2029-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kiyek, K. Resolution of Curve and Surface Singularities in Characteristic Zero Mathematics Geometry, algebraic Algebra Field theory (Physics) Differential equations, partial Algebraic Geometry Commutative Rings and Algebras Field Theory and Polynomials Several Complex Variables and Analytic Spaces Mathematik Charakteristik Null (DE-588)4472918-2 gnd Fläche (DE-588)4129864-0 gnd Singularität Mathematik (DE-588)4077459-4 gnd Kurve (DE-588)4033824-1 gnd |
subject_GND | (DE-588)4472918-2 (DE-588)4129864-0 (DE-588)4077459-4 (DE-588)4033824-1 (DE-588)4006432-3 |
title | Resolution of Curve and Surface Singularities in Characteristic Zero |
title_auth | Resolution of Curve and Surface Singularities in Characteristic Zero |
title_exact_search | Resolution of Curve and Surface Singularities in Characteristic Zero |
title_full | Resolution of Curve and Surface Singularities in Characteristic Zero by K. Kiyek, J. L. Vicente |
title_fullStr | Resolution of Curve and Surface Singularities in Characteristic Zero by K. Kiyek, J. L. Vicente |
title_full_unstemmed | Resolution of Curve and Surface Singularities in Characteristic Zero by K. Kiyek, J. L. Vicente |
title_short | Resolution of Curve and Surface Singularities |
title_sort | resolution of curve and surface singularities in characteristic zero |
title_sub | in Characteristic Zero |
topic | Mathematics Geometry, algebraic Algebra Field theory (Physics) Differential equations, partial Algebraic Geometry Commutative Rings and Algebras Field Theory and Polynomials Several Complex Variables and Analytic Spaces Mathematik Charakteristik Null (DE-588)4472918-2 gnd Fläche (DE-588)4129864-0 gnd Singularität Mathematik (DE-588)4077459-4 gnd Kurve (DE-588)4033824-1 gnd |
topic_facet | Mathematics Geometry, algebraic Algebra Field theory (Physics) Differential equations, partial Algebraic Geometry Commutative Rings and Algebras Field Theory and Polynomials Several Complex Variables and Analytic Spaces Mathematik Charakteristik Null Fläche Singularität Mathematik Kurve Bibliografie |
url | https://doi.org/10.1007/978-1-4020-2029-2 |
work_keys_str_mv | AT kiyekk resolutionofcurveandsurfacesingularitiesincharacteristiczero AT vicentejl resolutionofcurveandsurfacesingularitiesincharacteristiczero |