Matched Asymptotic Expansions in Reaction-Diffusion Theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London
Springer London
2004
|
Schriftenreihe: | Springer Monographs in Mathematics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The idea for this monograph was born out of the desire to collate the results from two distinct strands of the authors' research with the common theme of the application of the method of matched asymptotic expansions to problems arising in reaction-diffusion theory. In Part I, the method ofmatched asymptotic expansions (MAE) is used to obtain the complete structure ofthe solution to reaction-diffusion equations of the Fisher-Kolmogorovtype for large-r (dimensionlesstime), whichexhibit the formation ofa permanent form travelling wave(PTW) structure. In particular, the wavespeed for the large-t PTW, the correction to the wave speed and the rate of convergence of the solution onto the PTW are obtained. The primary focus of Chapters 2-4is the scalar Fisher-Kolmogorov equation with either the generalized Fisher nonlinearity or the mth-order (m > 1) Fisher nonlinearity while in Chapter 5 the analysis is extended by consideration of a system of Fisher-Kolmogorov equations. The methodology developed is flexibleand has wide applicability to scalar and systems of Fisher-Kolmogorov equations in one or higher spatial dimensions. The method of matched asymptotic expan sions has also been used successfully to give information about the structure and propagation speed of accelerating phase wave (PHW) structures which can evolvein reaction-diffusion equations (see Needham and Barnes [56]) and nonlinear diffusion equations of Fisher-Kolmogorov type. The approach pre sented in this part of the monograph is based on the results obtained in the series of papers by Leach and Needham [32],[33],[34], Leach, Needham and Kay [35],[37],[36] and Smith, Needham and Leach [65] |
Beschreibung: | 1 Online-Ressource (X, 290 p) |
ISBN: | 9780857293961 9781447110545 |
ISSN: | 1439-7382 |
DOI: | 10.1007/978-0-85729-396-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419229 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2004 |||| o||u| ||||||eng d | ||
020 | |a 9780857293961 |c Online |9 978-0-85729-396-1 | ||
020 | |a 9781447110545 |c Print |9 978-1-4471-1054-5 | ||
024 | 7 | |a 10.1007/978-0-85729-396-1 |2 doi | |
035 | |a (OCoLC)1184442900 | ||
035 | |a (DE-599)BVBBV042419229 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 511.4 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Leach, J. A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Matched Asymptotic Expansions in Reaction-Diffusion Theory |c by J. A. Leach, D. J. Needham |
264 | 1 | |a London |b Springer London |c 2004 | |
300 | |a 1 Online-Ressource (X, 290 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Monographs in Mathematics |x 1439-7382 | |
500 | |a The idea for this monograph was born out of the desire to collate the results from two distinct strands of the authors' research with the common theme of the application of the method of matched asymptotic expansions to problems arising in reaction-diffusion theory. In Part I, the method ofmatched asymptotic expansions (MAE) is used to obtain the complete structure ofthe solution to reaction-diffusion equations of the Fisher-Kolmogorovtype for large-r (dimensionlesstime), whichexhibit the formation ofa permanent form travelling wave(PTW) structure. In particular, the wavespeed for the large-t PTW, the correction to the wave speed and the rate of convergence of the solution onto the PTW are obtained. The primary focus of Chapters 2-4is the scalar Fisher-Kolmogorov equation with either the generalized Fisher nonlinearity or the mth-order (m > 1) Fisher nonlinearity while in Chapter 5 the analysis is extended by consideration of a system of Fisher-Kolmogorov equations. The methodology developed is flexibleand has wide applicability to scalar and systems of Fisher-Kolmogorov equations in one or higher spatial dimensions. The method of matched asymptotic expan sions has also been used successfully to give information about the structure and propagation speed of accelerating phase wave (PHW) structures which can evolvein reaction-diffusion equations (see Needham and Barnes [56]) and nonlinear diffusion equations of Fisher-Kolmogorov type. The approach pre sented in this part of the monograph is based on the results obtained in the series of papers by Leach and Needham [32],[33],[34], Leach, Needham and Kay [35],[37],[36] and Smith, Needham and Leach [65] | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Approximations and Expansions | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Reaktions-Diffusionsgleichung |0 (DE-588)4323967-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Asymptotische Entwicklung |0 (DE-588)4112609-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Reaktions-Diffusionsgleichung |0 (DE-588)4323967-5 |D s |
689 | 0 | 1 | |a Asymptotische Entwicklung |0 (DE-588)4112609-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Needham, D. J. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-0-85729-396-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854646 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153089614151680 |
---|---|
any_adam_object | |
author | Leach, J. A. |
author_facet | Leach, J. A. |
author_role | aut |
author_sort | Leach, J. A. |
author_variant | j a l ja jal |
building | Verbundindex |
bvnumber | BV042419229 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184442900 (DE-599)BVBBV042419229 |
dewey-full | 511.4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.4 |
dewey-search | 511.4 |
dewey-sort | 3511.4 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-0-85729-396-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03504nmm a2200505zc 4500</leader><controlfield tag="001">BV042419229</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780857293961</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-85729-396-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781447110545</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4471-1054-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-0-85729-396-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184442900</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419229</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.4</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Leach, J. A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Matched Asymptotic Expansions in Reaction-Diffusion Theory</subfield><subfield code="c">by J. A. Leach, D. J. Needham</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Springer London</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 290 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Monographs in Mathematics</subfield><subfield code="x">1439-7382</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The idea for this monograph was born out of the desire to collate the results from two distinct strands of the authors' research with the common theme of the application of the method of matched asymptotic expansions to problems arising in reaction-diffusion theory. In Part I, the method ofmatched asymptotic expansions (MAE) is used to obtain the complete structure ofthe solution to reaction-diffusion equations of the Fisher-Kolmogorovtype for large-r (dimensionlesstime), whichexhibit the formation ofa permanent form travelling wave(PTW) structure. In particular, the wavespeed for the large-t PTW, the correction to the wave speed and the rate of convergence of the solution onto the PTW are obtained. The primary focus of Chapters 2-4is the scalar Fisher-Kolmogorov equation with either the generalized Fisher nonlinearity or the mth-order (m > 1) Fisher nonlinearity while in Chapter 5 the analysis is extended by consideration of a system of Fisher-Kolmogorov equations. The methodology developed is flexibleand has wide applicability to scalar and systems of Fisher-Kolmogorov equations in one or higher spatial dimensions. The method of matched asymptotic expan sions has also been used successfully to give information about the structure and propagation speed of accelerating phase wave (PHW) structures which can evolvein reaction-diffusion equations (see Needham and Barnes [56]) and nonlinear diffusion equations of Fisher-Kolmogorov type. The approach pre sented in this part of the monograph is based on the results obtained in the series of papers by Leach and Needham [32],[33],[34], Leach, Needham and Kay [35],[37],[36] and Smith, Needham and Leach [65]</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximations and Expansions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reaktions-Diffusionsgleichung</subfield><subfield code="0">(DE-588)4323967-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Asymptotische Entwicklung</subfield><subfield code="0">(DE-588)4112609-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Reaktions-Diffusionsgleichung</subfield><subfield code="0">(DE-588)4323967-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Asymptotische Entwicklung</subfield><subfield code="0">(DE-588)4112609-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Needham, D. J.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-0-85729-396-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854646</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419229 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9780857293961 9781447110545 |
issn | 1439-7382 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854646 |
oclc_num | 1184442900 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 290 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Springer London |
record_format | marc |
series2 | Springer Monographs in Mathematics |
spelling | Leach, J. A. Verfasser aut Matched Asymptotic Expansions in Reaction-Diffusion Theory by J. A. Leach, D. J. Needham London Springer London 2004 1 Online-Ressource (X, 290 p) txt rdacontent c rdamedia cr rdacarrier Springer Monographs in Mathematics 1439-7382 The idea for this monograph was born out of the desire to collate the results from two distinct strands of the authors' research with the common theme of the application of the method of matched asymptotic expansions to problems arising in reaction-diffusion theory. In Part I, the method ofmatched asymptotic expansions (MAE) is used to obtain the complete structure ofthe solution to reaction-diffusion equations of the Fisher-Kolmogorovtype for large-r (dimensionlesstime), whichexhibit the formation ofa permanent form travelling wave(PTW) structure. In particular, the wavespeed for the large-t PTW, the correction to the wave speed and the rate of convergence of the solution onto the PTW are obtained. The primary focus of Chapters 2-4is the scalar Fisher-Kolmogorov equation with either the generalized Fisher nonlinearity or the mth-order (m > 1) Fisher nonlinearity while in Chapter 5 the analysis is extended by consideration of a system of Fisher-Kolmogorov equations. The methodology developed is flexibleand has wide applicability to scalar and systems of Fisher-Kolmogorov equations in one or higher spatial dimensions. The method of matched asymptotic expan sions has also been used successfully to give information about the structure and propagation speed of accelerating phase wave (PHW) structures which can evolvein reaction-diffusion equations (see Needham and Barnes [56]) and nonlinear diffusion equations of Fisher-Kolmogorov type. The approach pre sented in this part of the monograph is based on the results obtained in the series of papers by Leach and Needham [32],[33],[34], Leach, Needham and Kay [35],[37],[36] and Smith, Needham and Leach [65] Mathematics Differential equations, partial Approximations and Expansions Partial Differential Equations Mathematik Reaktions-Diffusionsgleichung (DE-588)4323967-5 gnd rswk-swf Asymptotische Entwicklung (DE-588)4112609-9 gnd rswk-swf Reaktions-Diffusionsgleichung (DE-588)4323967-5 s Asymptotische Entwicklung (DE-588)4112609-9 s 1\p DE-604 Needham, D. J. Sonstige oth https://doi.org/10.1007/978-0-85729-396-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Leach, J. A. Matched Asymptotic Expansions in Reaction-Diffusion Theory Mathematics Differential equations, partial Approximations and Expansions Partial Differential Equations Mathematik Reaktions-Diffusionsgleichung (DE-588)4323967-5 gnd Asymptotische Entwicklung (DE-588)4112609-9 gnd |
subject_GND | (DE-588)4323967-5 (DE-588)4112609-9 |
title | Matched Asymptotic Expansions in Reaction-Diffusion Theory |
title_auth | Matched Asymptotic Expansions in Reaction-Diffusion Theory |
title_exact_search | Matched Asymptotic Expansions in Reaction-Diffusion Theory |
title_full | Matched Asymptotic Expansions in Reaction-Diffusion Theory by J. A. Leach, D. J. Needham |
title_fullStr | Matched Asymptotic Expansions in Reaction-Diffusion Theory by J. A. Leach, D. J. Needham |
title_full_unstemmed | Matched Asymptotic Expansions in Reaction-Diffusion Theory by J. A. Leach, D. J. Needham |
title_short | Matched Asymptotic Expansions in Reaction-Diffusion Theory |
title_sort | matched asymptotic expansions in reaction diffusion theory |
topic | Mathematics Differential equations, partial Approximations and Expansions Partial Differential Equations Mathematik Reaktions-Diffusionsgleichung (DE-588)4323967-5 gnd Asymptotische Entwicklung (DE-588)4112609-9 gnd |
topic_facet | Mathematics Differential equations, partial Approximations and Expansions Partial Differential Equations Mathematik Reaktions-Diffusionsgleichung Asymptotische Entwicklung |
url | https://doi.org/10.1007/978-0-85729-396-1 |
work_keys_str_mv | AT leachja matchedasymptoticexpansionsinreactiondiffusiontheory AT needhamdj matchedasymptoticexpansionsinreactiondiffusiontheory |