A Concise Approach to Mathematical Analysis:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London
Springer London
2003
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | A Concise Approach to Mathematical Analysis introduces the undergraduate student to the more abstract concepts of advanced calculus. The main aim of the book is to smooth the transition from the problem-solving approach of standard calculus to the more rigorous approach of proof-writing and a deeper understanding of mathematical analysis. The first half of the textbook deals with the basic foundation of analysis on the real line; the second half introduces more abstract notions in mathematical analysis. Each topic begins with a brief introduction followed by detailed examples. A selection of exercises, ranging from the routine to the more challenging, then gives students the opportunity to practise writing proofs. The book is designed to be accessible to students with appropriate backgrounds from standard calculus courses but with limited or no previous experience in rigorous proofs. It is written primarily for advanced students of mathematics - in the 3rd or 4th year of their degree - who wish to specialise in pure and applied mathematics, but it will also prove useful to students of physics, engineering and computer science who also use advanced mathematical techniques |
Beschreibung: | 1 Online-Ressource (XII, 362p. 47 illus) |
ISBN: | 9780857293473 9781852335526 |
DOI: | 10.1007/978-0-85729-347-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419225 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2003 |||| o||u| ||||||eng d | ||
020 | |a 9780857293473 |c Online |9 978-0-85729-347-3 | ||
020 | |a 9781852335526 |c Print |9 978-1-85233-552-6 | ||
024 | 7 | |a 10.1007/978-0-85729-347-3 |2 doi | |
035 | |a (OCoLC)725190704 | ||
035 | |a (DE-599)BVBBV042419225 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Robdera, Mangatiana A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a A Concise Approach to Mathematical Analysis |c by Mangatiana A. Robdera |
264 | 1 | |a London |b Springer London |c 2003 | |
300 | |a 1 Online-Ressource (XII, 362p. 47 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a A Concise Approach to Mathematical Analysis introduces the undergraduate student to the more abstract concepts of advanced calculus. The main aim of the book is to smooth the transition from the problem-solving approach of standard calculus to the more rigorous approach of proof-writing and a deeper understanding of mathematical analysis. The first half of the textbook deals with the basic foundation of analysis on the real line; the second half introduces more abstract notions in mathematical analysis. Each topic begins with a brief introduction followed by detailed examples. A selection of exercises, ranging from the routine to the more challenging, then gives students the opportunity to practise writing proofs. The book is designed to be accessible to students with appropriate backgrounds from standard calculus courses but with limited or no previous experience in rigorous proofs. It is written primarily for advanced students of mathematics - in the 3rd or 4th year of their degree - who wish to specialise in pure and applied mathematics, but it will also prove useful to students of physics, engineering and computer science who also use advanced mathematical techniques | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Functional equations | |
650 | 4 | |a Fourier analysis | |
650 | 4 | |a Sequences (Mathematics) | |
650 | 4 | |a Analysis | |
650 | 4 | |a Real Functions | |
650 | 4 | |a Difference and Functional Equations | |
650 | 4 | |a Fourier Analysis | |
650 | 4 | |a Sequences, Series, Summability | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Analysis |0 (DE-588)4001865-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Analysis |0 (DE-588)4001865-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-0-85729-347-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854642 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153089619394560 |
---|---|
any_adam_object | |
author | Robdera, Mangatiana A. |
author_facet | Robdera, Mangatiana A. |
author_role | aut |
author_sort | Robdera, Mangatiana A. |
author_variant | m a r ma mar |
building | Verbundindex |
bvnumber | BV042419225 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)725190704 (DE-599)BVBBV042419225 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-0-85729-347-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02928nmm a2200529zc 4500</leader><controlfield tag="001">BV042419225</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780857293473</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-85729-347-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781852335526</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-85233-552-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-0-85729-347-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)725190704</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419225</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Robdera, Mangatiana A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Concise Approach to Mathematical Analysis</subfield><subfield code="c">by Mangatiana A. Robdera</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Springer London</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 362p. 47 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">A Concise Approach to Mathematical Analysis introduces the undergraduate student to the more abstract concepts of advanced calculus. The main aim of the book is to smooth the transition from the problem-solving approach of standard calculus to the more rigorous approach of proof-writing and a deeper understanding of mathematical analysis. The first half of the textbook deals with the basic foundation of analysis on the real line; the second half introduces more abstract notions in mathematical analysis. Each topic begins with a brief introduction followed by detailed examples. A selection of exercises, ranging from the routine to the more challenging, then gives students the opportunity to practise writing proofs. The book is designed to be accessible to students with appropriate backgrounds from standard calculus courses but with limited or no previous experience in rigorous proofs. It is written primarily for advanced students of mathematics - in the 3rd or 4th year of their degree - who wish to specialise in pure and applied mathematics, but it will also prove useful to students of physics, engineering and computer science who also use advanced mathematical techniques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sequences (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Real Functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Difference and Functional Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sequences, Series, Summability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-0-85729-347-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854642</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419225 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9780857293473 9781852335526 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854642 |
oclc_num | 725190704 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 362p. 47 illus) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Springer London |
record_format | marc |
spelling | Robdera, Mangatiana A. Verfasser aut A Concise Approach to Mathematical Analysis by Mangatiana A. Robdera London Springer London 2003 1 Online-Ressource (XII, 362p. 47 illus) txt rdacontent c rdamedia cr rdacarrier A Concise Approach to Mathematical Analysis introduces the undergraduate student to the more abstract concepts of advanced calculus. The main aim of the book is to smooth the transition from the problem-solving approach of standard calculus to the more rigorous approach of proof-writing and a deeper understanding of mathematical analysis. The first half of the textbook deals with the basic foundation of analysis on the real line; the second half introduces more abstract notions in mathematical analysis. Each topic begins with a brief introduction followed by detailed examples. A selection of exercises, ranging from the routine to the more challenging, then gives students the opportunity to practise writing proofs. The book is designed to be accessible to students with appropriate backgrounds from standard calculus courses but with limited or no previous experience in rigorous proofs. It is written primarily for advanced students of mathematics - in the 3rd or 4th year of their degree - who wish to specialise in pure and applied mathematics, but it will also prove useful to students of physics, engineering and computer science who also use advanced mathematical techniques Mathematics Global analysis (Mathematics) Functional equations Fourier analysis Sequences (Mathematics) Analysis Real Functions Difference and Functional Equations Fourier Analysis Sequences, Series, Summability Mathematik Analysis (DE-588)4001865-9 gnd rswk-swf Analysis (DE-588)4001865-9 s 1\p DE-604 https://doi.org/10.1007/978-0-85729-347-3 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Robdera, Mangatiana A. A Concise Approach to Mathematical Analysis Mathematics Global analysis (Mathematics) Functional equations Fourier analysis Sequences (Mathematics) Analysis Real Functions Difference and Functional Equations Fourier Analysis Sequences, Series, Summability Mathematik Analysis (DE-588)4001865-9 gnd |
subject_GND | (DE-588)4001865-9 |
title | A Concise Approach to Mathematical Analysis |
title_auth | A Concise Approach to Mathematical Analysis |
title_exact_search | A Concise Approach to Mathematical Analysis |
title_full | A Concise Approach to Mathematical Analysis by Mangatiana A. Robdera |
title_fullStr | A Concise Approach to Mathematical Analysis by Mangatiana A. Robdera |
title_full_unstemmed | A Concise Approach to Mathematical Analysis by Mangatiana A. Robdera |
title_short | A Concise Approach to Mathematical Analysis |
title_sort | a concise approach to mathematical analysis |
topic | Mathematics Global analysis (Mathematics) Functional equations Fourier analysis Sequences (Mathematics) Analysis Real Functions Difference and Functional Equations Fourier Analysis Sequences, Series, Summability Mathematik Analysis (DE-588)4001865-9 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Functional equations Fourier analysis Sequences (Mathematics) Analysis Real Functions Difference and Functional Equations Fourier Analysis Sequences, Series, Summability Mathematik |
url | https://doi.org/10.1007/978-0-85729-347-3 |
work_keys_str_mv | AT robderamangatianaa aconciseapproachtomathematicalanalysis |