A First Course in Discrete Mathematics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London
Springer London
2002
|
Schriftenreihe: | Springer Undergraduate Mathematics Series
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Discrete mathematics has now established its place in most undergraduate mathematics courses. This textbook provides a concise, readable and accessible introduction to a number of topics in this area, such as enumeration, graph theory, Latin squares and designs. It is aimed at second-year undergraduate mathematics students, and provides them with many of the basic techniques, ideas and results. It contains many worked examples, and each chapter ends with a large number of exercises, with hints or solutions provided for most of them. As well as including standard topics such as binomial coefficients, recurrence, the inclusion-exclusion principle, trees, Hamiltonian and Eulerian graphs, Latin squares and finite projective planes, the text also includes material on the ménage problem, magic squares, Catalan and Stirling numbers, and tournament schedules |
Beschreibung: | 1 Online-Ressource (VIII, 200 p) |
ISBN: | 9780857293152 9781852332365 |
ISSN: | 1615-2085 |
DOI: | 10.1007/978-0-85729-315-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419224 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2002 |||| o||u| ||||||eng d | ||
020 | |a 9780857293152 |c Online |9 978-0-85729-315-2 | ||
020 | |a 9781852332365 |c Print |9 978-1-85233-236-5 | ||
024 | 7 | |a 10.1007/978-0-85729-315-2 |2 doi | |
035 | |a (OCoLC)879624291 | ||
035 | |a (DE-599)BVBBV042419224 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 511.6 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Anderson, Ian |e Verfasser |4 aut | |
245 | 1 | 0 | |a A First Course in Discrete Mathematics |c by Ian Anderson |
264 | 1 | |a London |b Springer London |c 2002 | |
300 | |a 1 Online-Ressource (VIII, 200 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Undergraduate Mathematics Series |x 1615-2085 | |
500 | |a Discrete mathematics has now established its place in most undergraduate mathematics courses. This textbook provides a concise, readable and accessible introduction to a number of topics in this area, such as enumeration, graph theory, Latin squares and designs. It is aimed at second-year undergraduate mathematics students, and provides them with many of the basic techniques, ideas and results. It contains many worked examples, and each chapter ends with a large number of exercises, with hints or solutions provided for most of them. As well as including standard topics such as binomial coefficients, recurrence, the inclusion-exclusion principle, trees, Hamiltonian and Eulerian graphs, Latin squares and finite projective planes, the text also includes material on the ménage problem, magic squares, Catalan and Stirling numbers, and tournament schedules | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Computational complexity | |
650 | 4 | |a Combinatorics | |
650 | 4 | |a Discrete Mathematics in Computer Science | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Diskrete Mathematik |0 (DE-588)4129143-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Diskrete Mathematik |0 (DE-588)4129143-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-0-85729-315-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854641 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153089609957376 |
---|---|
any_adam_object | |
author | Anderson, Ian |
author_facet | Anderson, Ian |
author_role | aut |
author_sort | Anderson, Ian |
author_variant | i a ia |
building | Verbundindex |
bvnumber | BV042419224 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)879624291 (DE-599)BVBBV042419224 |
dewey-full | 511.6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.6 |
dewey-search | 511.6 |
dewey-sort | 3511.6 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-0-85729-315-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02448nmm a2200469zc 4500</leader><controlfield tag="001">BV042419224</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780857293152</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-85729-315-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781852332365</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-85233-236-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-0-85729-315-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879624291</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419224</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.6</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Anderson, Ian</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A First Course in Discrete Mathematics</subfield><subfield code="c">by Ian Anderson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Springer London</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 200 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Undergraduate Mathematics Series</subfield><subfield code="x">1615-2085</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Discrete mathematics has now established its place in most undergraduate mathematics courses. This textbook provides a concise, readable and accessible introduction to a number of topics in this area, such as enumeration, graph theory, Latin squares and designs. It is aimed at second-year undergraduate mathematics students, and provides them with many of the basic techniques, ideas and results. It contains many worked examples, and each chapter ends with a large number of exercises, with hints or solutions provided for most of them. As well as including standard topics such as binomial coefficients, recurrence, the inclusion-exclusion principle, trees, Hamiltonian and Eulerian graphs, Latin squares and finite projective planes, the text also includes material on the ménage problem, magic squares, Catalan and Stirling numbers, and tournament schedules</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discrete Mathematics in Computer Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diskrete Mathematik</subfield><subfield code="0">(DE-588)4129143-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Diskrete Mathematik</subfield><subfield code="0">(DE-588)4129143-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-0-85729-315-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854641</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419224 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9780857293152 9781852332365 |
issn | 1615-2085 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854641 |
oclc_num | 879624291 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 200 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Springer London |
record_format | marc |
series2 | Springer Undergraduate Mathematics Series |
spelling | Anderson, Ian Verfasser aut A First Course in Discrete Mathematics by Ian Anderson London Springer London 2002 1 Online-Ressource (VIII, 200 p) txt rdacontent c rdamedia cr rdacarrier Springer Undergraduate Mathematics Series 1615-2085 Discrete mathematics has now established its place in most undergraduate mathematics courses. This textbook provides a concise, readable and accessible introduction to a number of topics in this area, such as enumeration, graph theory, Latin squares and designs. It is aimed at second-year undergraduate mathematics students, and provides them with many of the basic techniques, ideas and results. It contains many worked examples, and each chapter ends with a large number of exercises, with hints or solutions provided for most of them. As well as including standard topics such as binomial coefficients, recurrence, the inclusion-exclusion principle, trees, Hamiltonian and Eulerian graphs, Latin squares and finite projective planes, the text also includes material on the ménage problem, magic squares, Catalan and Stirling numbers, and tournament schedules Mathematics Computational complexity Combinatorics Discrete Mathematics in Computer Science Mathematik Diskrete Mathematik (DE-588)4129143-8 gnd rswk-swf Diskrete Mathematik (DE-588)4129143-8 s 1\p DE-604 https://doi.org/10.1007/978-0-85729-315-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Anderson, Ian A First Course in Discrete Mathematics Mathematics Computational complexity Combinatorics Discrete Mathematics in Computer Science Mathematik Diskrete Mathematik (DE-588)4129143-8 gnd |
subject_GND | (DE-588)4129143-8 |
title | A First Course in Discrete Mathematics |
title_auth | A First Course in Discrete Mathematics |
title_exact_search | A First Course in Discrete Mathematics |
title_full | A First Course in Discrete Mathematics by Ian Anderson |
title_fullStr | A First Course in Discrete Mathematics by Ian Anderson |
title_full_unstemmed | A First Course in Discrete Mathematics by Ian Anderson |
title_short | A First Course in Discrete Mathematics |
title_sort | a first course in discrete mathematics |
topic | Mathematics Computational complexity Combinatorics Discrete Mathematics in Computer Science Mathematik Diskrete Mathematik (DE-588)4129143-8 gnd |
topic_facet | Mathematics Computational complexity Combinatorics Discrete Mathematics in Computer Science Mathematik Diskrete Mathematik |
url | https://doi.org/10.1007/978-0-85729-315-2 |
work_keys_str_mv | AT andersonian afirstcourseindiscretemathematics |