Basic Real Analysis:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
2003
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | One of the bedrocks of any mathematics education, the study of real analysis introduces students both to mathematical rigor and to the deep theorems and counterexamples that arise from such rigor: for instance, the construction of number systems, the Cantor Set, the Weierstrass nowhere differentiable function, and the Weierstrass approximation theorem. Basic Real Analysis is a modern, systematic text that presents the fundamentals and touchstone results of the subject in full rigor, but in a style that requires little prior familiarity with proofs or mathematical language. Key features include: * A broad view of mathematics throughout the book * Treatment of all concepts for real numbers first, with extensions to metric spaces later, in a separate chapter * Elegant proofs * Excellent choice of topics * Numerous examples and exercises to enforce methodology; exercises integrated into the main text, as well as at the end of each chapter * Emphasis on monotone functions throughout * Good development of integration theory * Special topics on Banach and Hilbert spaces and Fourier series, often not included in many courses on real analysis * Solid preparation for deeper study of functional analysis * Chapter on elementary probability * Comprehensive bibliography and index * Solutions manual available to instructors upon request By covering all the basics and developing rigor simultaneously, this introduction to real analysis is ideal for senior undergraduates and beginning graduate students, both as a classroom text or for self-study. With its wide range of topics and its view of real analysis in a larger context, the book will be appropriate for more advanced readers as well |
Beschreibung: | 1 Online-Ressource (XIII, 559 p) |
ISBN: | 9780817682323 9781461265030 |
DOI: | 10.1007/978-0-8176-8232-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419221 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2003 |||| o||u| ||||||eng d | ||
020 | |a 9780817682323 |c Online |9 978-0-8176-8232-3 | ||
020 | |a 9781461265030 |c Print |9 978-1-4612-6503-0 | ||
024 | 7 | |a 10.1007/978-0-8176-8232-3 |2 doi | |
035 | |a (OCoLC)724661662 | ||
035 | |a (DE-599)BVBBV042419221 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Sohrab, Houshang H. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Basic Real Analysis |c by Houshang H. Sohrab |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 2003 | |
300 | |a 1 Online-Ressource (XIII, 559 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a One of the bedrocks of any mathematics education, the study of real analysis introduces students both to mathematical rigor and to the deep theorems and counterexamples that arise from such rigor: for instance, the construction of number systems, the Cantor Set, the Weierstrass nowhere differentiable function, and the Weierstrass approximation theorem. Basic Real Analysis is a modern, systematic text that presents the fundamentals and touchstone results of the subject in full rigor, but in a style that requires little prior familiarity with proofs or mathematical language. Key features include: * A broad view of mathematics throughout the book * Treatment of all concepts for real numbers first, with extensions to metric spaces later, in a separate chapter * Elegant proofs * Excellent choice of topics * Numerous examples and exercises to enforce methodology; exercises integrated into the main text, as well as at the end of each chapter * Emphasis on monotone functions throughout * Good development of integration theory * Special topics on Banach and Hilbert spaces and Fourier series, often not included in many courses on real analysis * Solid preparation for deeper study of functional analysis * Chapter on elementary probability * Comprehensive bibliography and index * Solutions manual available to instructors upon request By covering all the basics and developing rigor simultaneously, this introduction to real analysis is ideal for senior undergraduates and beginning graduate students, both as a classroom text or for self-study. With its wide range of topics and its view of real analysis in a larger context, the book will be appropriate for more advanced readers as well | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Logic, Symbolic and mathematical | |
650 | 4 | |a Analysis | |
650 | 4 | |a Measure and Integration | |
650 | 4 | |a Mathematical Logic and Foundations | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Reelle Analysis |0 (DE-588)4627581-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Reelle Analysis |0 (DE-588)4627581-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-0-8176-8232-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854638 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153089616248832 |
---|---|
any_adam_object | |
author | Sohrab, Houshang H. |
author_facet | Sohrab, Houshang H. |
author_role | aut |
author_sort | Sohrab, Houshang H. |
author_variant | h h s hh hhs |
building | Verbundindex |
bvnumber | BV042419221 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)724661662 (DE-599)BVBBV042419221 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-0-8176-8232-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03283nmm a2200481zc 4500</leader><controlfield tag="001">BV042419221</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817682323</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-8176-8232-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461265030</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-6503-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-0-8176-8232-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)724661662</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419221</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sohrab, Houshang H.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Basic Real Analysis</subfield><subfield code="c">by Houshang H. Sohrab</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 559 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">One of the bedrocks of any mathematics education, the study of real analysis introduces students both to mathematical rigor and to the deep theorems and counterexamples that arise from such rigor: for instance, the construction of number systems, the Cantor Set, the Weierstrass nowhere differentiable function, and the Weierstrass approximation theorem. Basic Real Analysis is a modern, systematic text that presents the fundamentals and touchstone results of the subject in full rigor, but in a style that requires little prior familiarity with proofs or mathematical language. Key features include: * A broad view of mathematics throughout the book * Treatment of all concepts for real numbers first, with extensions to metric spaces later, in a separate chapter * Elegant proofs * Excellent choice of topics * Numerous examples and exercises to enforce methodology; exercises integrated into the main text, as well as at the end of each chapter * Emphasis on monotone functions throughout * Good development of integration theory * Special topics on Banach and Hilbert spaces and Fourier series, often not included in many courses on real analysis * Solid preparation for deeper study of functional analysis * Chapter on elementary probability * Comprehensive bibliography and index * Solutions manual available to instructors upon request By covering all the basics and developing rigor simultaneously, this introduction to real analysis is ideal for senior undergraduates and beginning graduate students, both as a classroom text or for self-study. With its wide range of topics and its view of real analysis in a larger context, the book will be appropriate for more advanced readers as well</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic, Symbolic and mathematical</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Measure and Integration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Logic and Foundations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reelle Analysis</subfield><subfield code="0">(DE-588)4627581-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Reelle Analysis</subfield><subfield code="0">(DE-588)4627581-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-0-8176-8232-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854638</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419221 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9780817682323 9781461265030 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854638 |
oclc_num | 724661662 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIII, 559 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Birkhäuser Boston |
record_format | marc |
spelling | Sohrab, Houshang H. Verfasser aut Basic Real Analysis by Houshang H. Sohrab Boston, MA Birkhäuser Boston 2003 1 Online-Ressource (XIII, 559 p) txt rdacontent c rdamedia cr rdacarrier One of the bedrocks of any mathematics education, the study of real analysis introduces students both to mathematical rigor and to the deep theorems and counterexamples that arise from such rigor: for instance, the construction of number systems, the Cantor Set, the Weierstrass nowhere differentiable function, and the Weierstrass approximation theorem. Basic Real Analysis is a modern, systematic text that presents the fundamentals and touchstone results of the subject in full rigor, but in a style that requires little prior familiarity with proofs or mathematical language. Key features include: * A broad view of mathematics throughout the book * Treatment of all concepts for real numbers first, with extensions to metric spaces later, in a separate chapter * Elegant proofs * Excellent choice of topics * Numerous examples and exercises to enforce methodology; exercises integrated into the main text, as well as at the end of each chapter * Emphasis on monotone functions throughout * Good development of integration theory * Special topics on Banach and Hilbert spaces and Fourier series, often not included in many courses on real analysis * Solid preparation for deeper study of functional analysis * Chapter on elementary probability * Comprehensive bibliography and index * Solutions manual available to instructors upon request By covering all the basics and developing rigor simultaneously, this introduction to real analysis is ideal for senior undergraduates and beginning graduate students, both as a classroom text or for self-study. With its wide range of topics and its view of real analysis in a larger context, the book will be appropriate for more advanced readers as well Mathematics Global analysis (Mathematics) Logic, Symbolic and mathematical Analysis Measure and Integration Mathematical Logic and Foundations Mathematik Reelle Analysis (DE-588)4627581-2 gnd rswk-swf Reelle Analysis (DE-588)4627581-2 s 1\p DE-604 https://doi.org/10.1007/978-0-8176-8232-3 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Sohrab, Houshang H. Basic Real Analysis Mathematics Global analysis (Mathematics) Logic, Symbolic and mathematical Analysis Measure and Integration Mathematical Logic and Foundations Mathematik Reelle Analysis (DE-588)4627581-2 gnd |
subject_GND | (DE-588)4627581-2 |
title | Basic Real Analysis |
title_auth | Basic Real Analysis |
title_exact_search | Basic Real Analysis |
title_full | Basic Real Analysis by Houshang H. Sohrab |
title_fullStr | Basic Real Analysis by Houshang H. Sohrab |
title_full_unstemmed | Basic Real Analysis by Houshang H. Sohrab |
title_short | Basic Real Analysis |
title_sort | basic real analysis |
topic | Mathematics Global analysis (Mathematics) Logic, Symbolic and mathematical Analysis Measure and Integration Mathematical Logic and Foundations Mathematik Reelle Analysis (DE-588)4627581-2 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Logic, Symbolic and mathematical Analysis Measure and Integration Mathematical Logic and Foundations Mathematik Reelle Analysis |
url | https://doi.org/10.1007/978-0-8176-8232-3 |
work_keys_str_mv | AT sohrabhoushangh basicrealanalysis |