Mathematical Theory of Diffraction:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
2004
|
Schriftenreihe: | Progress in Mathematical Physics
35 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Arnold Sommerfeld's Mathematical Theory of Diffraction marks a milestone in optical theory, full of insights that are still relevant today. In a stunning tour de force, Sommerfeld derives the first mathematically rigorous solution of an optical diffraction problem. Indeed, his diffraction analysis is a surprisingly rich and complex mix of pure and applied mathematics, and his often-cited diffraction solution is presented only as an application of a much more general set of mathematical results. The body of Sommerfeld's work is devoted to the systematic development of a method for deriving solutions of the wave equation on Riemann surfaces, a fascinating but perhaps underappreciated topic in mathematical physics. This complete translation, reflecting substantial scholarship, is the first publication in English of Sommerfeld's original work. The extensive notes by the translators are rich in historical background and provide many technical details for the reader. A detailed account of the previous diffraction analyses of Kirchhoff and Poincaré provides a context for the striking originality and power of Sommerfeld's ideas. The availability of this translation is an enriching contribution to the community of mathematical and theoretical physicists |
Beschreibung: | 1 Online-Ressource (IX, 157 p) |
ISBN: | 9780817681968 9781461264859 |
DOI: | 10.1007/978-0-8176-8196-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042419204 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2004 |||| o||u| ||||||eng d | ||
020 | |a 9780817681968 |c Online |9 978-0-8176-8196-8 | ||
020 | |a 9781461264859 |c Print |9 978-1-4612-6485-9 | ||
024 | 7 | |a 10.1007/978-0-8176-8196-8 |2 doi | |
035 | |a (OCoLC)1184363199 | ||
035 | |a (DE-599)BVBBV042419204 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Sommerfeld, Arnold |e Verfasser |4 aut | |
245 | 1 | 0 | |a Mathematical Theory of Diffraction |c by Arnold Sommerfeld |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 2004 | |
300 | |a 1 Online-Ressource (IX, 157 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Progress in Mathematical Physics |v 35 | |
500 | |a Arnold Sommerfeld's Mathematical Theory of Diffraction marks a milestone in optical theory, full of insights that are still relevant today. In a stunning tour de force, Sommerfeld derives the first mathematically rigorous solution of an optical diffraction problem. Indeed, his diffraction analysis is a surprisingly rich and complex mix of pure and applied mathematics, and his often-cited diffraction solution is presented only as an application of a much more general set of mathematical results. The body of Sommerfeld's work is devoted to the systematic development of a method for deriving solutions of the wave equation on Riemann surfaces, a fascinating but perhaps underappreciated topic in mathematical physics. This complete translation, reflecting substantial scholarship, is the first publication in English of Sommerfeld's original work. The extensive notes by the translators are rich in historical background and provide many technical details for the reader. A detailed account of the previous diffraction analyses of Kirchhoff and Poincaré provides a context for the striking originality and power of Sommerfeld's ideas. The availability of this translation is an enriching contribution to the community of mathematical and theoretical physicists | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a History of Mathematical Sciences | |
650 | 4 | |a Mathematical Methods in Physics | |
650 | 4 | |a Optics and Electrodynamics | |
650 | 4 | |a Optics, Optoelectronics, Plasmonics and Optical Devices | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Mathematische Physik | |
650 | 0 | 7 | |a Lichtbeugung |0 (DE-588)4195853-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lichtbeugung |0 (DE-588)4195853-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-0-8176-8196-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854621 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153089575354368 |
---|---|
any_adam_object | |
author | Sommerfeld, Arnold |
author_facet | Sommerfeld, Arnold |
author_role | aut |
author_sort | Sommerfeld, Arnold |
author_variant | a s as |
building | Verbundindex |
bvnumber | BV042419204 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184363199 (DE-599)BVBBV042419204 |
dewey-full | 519 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519 |
dewey-search | 519 |
dewey-sort | 3519 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-0-8176-8196-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03028nmm a2200517zcb4500</leader><controlfield tag="001">BV042419204</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817681968</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-8176-8196-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461264859</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-6485-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-0-8176-8196-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184363199</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419204</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sommerfeld, Arnold</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical Theory of Diffraction</subfield><subfield code="c">by Arnold Sommerfeld</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 157 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Progress in Mathematical Physics</subfield><subfield code="v">35</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Arnold Sommerfeld's Mathematical Theory of Diffraction marks a milestone in optical theory, full of insights that are still relevant today. In a stunning tour de force, Sommerfeld derives the first mathematically rigorous solution of an optical diffraction problem. Indeed, his diffraction analysis is a surprisingly rich and complex mix of pure and applied mathematics, and his often-cited diffraction solution is presented only as an application of a much more general set of mathematical results. The body of Sommerfeld's work is devoted to the systematic development of a method for deriving solutions of the wave equation on Riemann surfaces, a fascinating but perhaps underappreciated topic in mathematical physics. This complete translation, reflecting substantial scholarship, is the first publication in English of Sommerfeld's original work. The extensive notes by the translators are rich in historical background and provide many technical details for the reader. A detailed account of the previous diffraction analyses of Kirchhoff and Poincaré provides a context for the striking originality and power of Sommerfeld's ideas. The availability of this translation is an enriching contribution to the community of mathematical and theoretical physicists</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">History of Mathematical Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Methods in Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optics and Electrodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optics, Optoelectronics, Plasmonics and Optical Devices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lichtbeugung</subfield><subfield code="0">(DE-588)4195853-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lichtbeugung</subfield><subfield code="0">(DE-588)4195853-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-0-8176-8196-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854621</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419204 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9780817681968 9781461264859 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854621 |
oclc_num | 1184363199 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (IX, 157 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Birkhäuser Boston |
record_format | marc |
series2 | Progress in Mathematical Physics |
spelling | Sommerfeld, Arnold Verfasser aut Mathematical Theory of Diffraction by Arnold Sommerfeld Boston, MA Birkhäuser Boston 2004 1 Online-Ressource (IX, 157 p) txt rdacontent c rdamedia cr rdacarrier Progress in Mathematical Physics 35 Arnold Sommerfeld's Mathematical Theory of Diffraction marks a milestone in optical theory, full of insights that are still relevant today. In a stunning tour de force, Sommerfeld derives the first mathematically rigorous solution of an optical diffraction problem. Indeed, his diffraction analysis is a surprisingly rich and complex mix of pure and applied mathematics, and his often-cited diffraction solution is presented only as an application of a much more general set of mathematical results. The body of Sommerfeld's work is devoted to the systematic development of a method for deriving solutions of the wave equation on Riemann surfaces, a fascinating but perhaps underappreciated topic in mathematical physics. This complete translation, reflecting substantial scholarship, is the first publication in English of Sommerfeld's original work. The extensive notes by the translators are rich in historical background and provide many technical details for the reader. A detailed account of the previous diffraction analyses of Kirchhoff and Poincaré provides a context for the striking originality and power of Sommerfeld's ideas. The availability of this translation is an enriching contribution to the community of mathematical and theoretical physicists Mathematics Mathematical physics Applications of Mathematics History of Mathematical Sciences Mathematical Methods in Physics Optics and Electrodynamics Optics, Optoelectronics, Plasmonics and Optical Devices Mathematik Mathematische Physik Lichtbeugung (DE-588)4195853-6 gnd rswk-swf Lichtbeugung (DE-588)4195853-6 s 1\p DE-604 https://doi.org/10.1007/978-0-8176-8196-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Sommerfeld, Arnold Mathematical Theory of Diffraction Mathematics Mathematical physics Applications of Mathematics History of Mathematical Sciences Mathematical Methods in Physics Optics and Electrodynamics Optics, Optoelectronics, Plasmonics and Optical Devices Mathematik Mathematische Physik Lichtbeugung (DE-588)4195853-6 gnd |
subject_GND | (DE-588)4195853-6 |
title | Mathematical Theory of Diffraction |
title_auth | Mathematical Theory of Diffraction |
title_exact_search | Mathematical Theory of Diffraction |
title_full | Mathematical Theory of Diffraction by Arnold Sommerfeld |
title_fullStr | Mathematical Theory of Diffraction by Arnold Sommerfeld |
title_full_unstemmed | Mathematical Theory of Diffraction by Arnold Sommerfeld |
title_short | Mathematical Theory of Diffraction |
title_sort | mathematical theory of diffraction |
topic | Mathematics Mathematical physics Applications of Mathematics History of Mathematical Sciences Mathematical Methods in Physics Optics and Electrodynamics Optics, Optoelectronics, Plasmonics and Optical Devices Mathematik Mathematische Physik Lichtbeugung (DE-588)4195853-6 gnd |
topic_facet | Mathematics Mathematical physics Applications of Mathematics History of Mathematical Sciences Mathematical Methods in Physics Optics and Electrodynamics Optics, Optoelectronics, Plasmonics and Optical Devices Mathematik Mathematische Physik Lichtbeugung |
url | https://doi.org/10.1007/978-0-8176-8196-8 |
work_keys_str_mv | AT sommerfeldarnold mathematicaltheoryofdiffraction |