Lectures on Clifford (Geometric) Algebras and Applications:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
2004
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Advances in technology over the last 25 years have created a situation in which workers in diverse areas of computerscience and engineering have found it neces sary to increase their knowledge of related fields in order to make further progress. Clifford (geometric) algebra offers a unified algebraic framework for the direct expression of the geometric ideas underlying the great mathematical theories of linear and multilinear algebra, projective and affine geometries, and differential geometry. Indeed, for many people working in this area, geometric algebra is the natural extension of the real number system to include the concept of direction. The familiar complex numbers of the plane and the quaternions of four dimen sions are examples of lower-dimensional geometric algebras. During "The 6th International Conference on Clifford Algebras and their Ap plications in Mathematical Physics" held May 20--25, 2002, at Tennessee Tech nological University in Cookeville, Tennessee, a Lecture Series on Clifford Ge ometric Algebras was presented. Its goal was to to provide beginning graduate students in mathematics and physics and other newcomers to the field with no prior knowledge of Clifford algebras with a bird's eye view of Clifford geometric algebras and their applications. The lectures were given by some of the field's most recognized experts. The enthusiastic response of the more than 80 partici pants in the Lecture Series, many of whom were graduate students or postdocs, encouraged us to publish the expanded lectures as chapters in book form |
Beschreibung: | 1 Online-Ressource (XVII, 221p. 25 illus) |
ISBN: | 9780817681906 9780817632571 |
DOI: | 10.1007/978-0-8176-8190-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419201 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2004 |||| o||u| ||||||eng d | ||
020 | |a 9780817681906 |c Online |9 978-0-8176-8190-6 | ||
020 | |a 9780817632571 |c Print |9 978-0-8176-3257-1 | ||
024 | 7 | |a 10.1007/978-0-8176-8190-6 |2 doi | |
035 | |a (OCoLC)879621274 | ||
035 | |a (DE-599)BVBBV042419201 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516.36 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Ablamowicz, Rafal |e Verfasser |4 aut | |
245 | 1 | 0 | |a Lectures on Clifford (Geometric) Algebras and Applications |c by Rafal Ablamowicz, William E. Baylis, Thomas Branson, Pertti Lounesto, Ian Porteous, John Ryan, J. M. Selig, Garret Sobczyk ; edited by Rafal Abłamowicz, Garret Sobczyk |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 2004 | |
300 | |a 1 Online-Ressource (XVII, 221p. 25 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Advances in technology over the last 25 years have created a situation in which workers in diverse areas of computerscience and engineering have found it neces sary to increase their knowledge of related fields in order to make further progress. Clifford (geometric) algebra offers a unified algebraic framework for the direct expression of the geometric ideas underlying the great mathematical theories of linear and multilinear algebra, projective and affine geometries, and differential geometry. Indeed, for many people working in this area, geometric algebra is the natural extension of the real number system to include the concept of direction. The familiar complex numbers of the plane and the quaternions of four dimen sions are examples of lower-dimensional geometric algebras. During "The 6th International Conference on Clifford Algebras and their Ap plications in Mathematical Physics" held May 20--25, 2002, at Tennessee Tech nological University in Cookeville, Tennessee, a Lecture Series on Clifford Ge ometric Algebras was presented. Its goal was to to provide beginning graduate students in mathematics and physics and other newcomers to the field with no prior knowledge of Clifford algebras with a bird's eye view of Clifford geometric algebras and their applications. The lectures were given by some of the field's most recognized experts. The enthusiastic response of the more than 80 partici pants in the Lecture Series, many of whom were graduate students or postdocs, encouraged us to publish the expanded lectures as chapters in book form | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Algebra | |
650 | 4 | |a Global differential geometry | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Mathematical Methods in Physics | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Mathematische Physik | |
650 | 0 | 7 | |a Clifford-Algebra |0 (DE-588)4199958-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Clifford-Algebra |0 (DE-588)4199958-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Baylis, William E. |e Sonstige |4 oth | |
700 | 1 | |a Branson, Thomas |e Sonstige |4 oth | |
700 | 1 | |a Lounesto, Pertti |e Sonstige |4 oth | |
700 | 1 | |a Porteous, Ian |e Sonstige |4 oth | |
700 | 1 | |a Ryan, John |e Sonstige |4 oth | |
700 | 1 | |a Selig, J. M. |e Sonstige |4 oth | |
700 | 1 | |a Sobczyk, Garret |e Sonstige |4 oth | |
700 | 1 | |a Abłamowicz, Rafal |e Sonstige |4 oth | |
700 | 1 | |a Sobczyk, Garret |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-0-8176-8190-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854618 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153089583742976 |
---|---|
any_adam_object | |
author | Ablamowicz, Rafal |
author_facet | Ablamowicz, Rafal |
author_role | aut |
author_sort | Ablamowicz, Rafal |
author_variant | r a ra |
building | Verbundindex |
bvnumber | BV042419201 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)879621274 (DE-599)BVBBV042419201 |
dewey-full | 516.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.36 |
dewey-search | 516.36 |
dewey-sort | 3516.36 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-0-8176-8190-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03800nmm a2200601zc 4500</leader><controlfield tag="001">BV042419201</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817681906</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-8176-8190-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817632571</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-8176-3257-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-0-8176-8190-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879621274</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419201</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ablamowicz, Rafal</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lectures on Clifford (Geometric) Algebras and Applications</subfield><subfield code="c">by Rafal Ablamowicz, William E. Baylis, Thomas Branson, Pertti Lounesto, Ian Porteous, John Ryan, J. M. Selig, Garret Sobczyk ; edited by Rafal Abłamowicz, Garret Sobczyk</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVII, 221p. 25 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Advances in technology over the last 25 years have created a situation in which workers in diverse areas of computerscience and engineering have found it neces sary to increase their knowledge of related fields in order to make further progress. Clifford (geometric) algebra offers a unified algebraic framework for the direct expression of the geometric ideas underlying the great mathematical theories of linear and multilinear algebra, projective and affine geometries, and differential geometry. Indeed, for many people working in this area, geometric algebra is the natural extension of the real number system to include the concept of direction. The familiar complex numbers of the plane and the quaternions of four dimen sions are examples of lower-dimensional geometric algebras. During "The 6th International Conference on Clifford Algebras and their Ap plications in Mathematical Physics" held May 20--25, 2002, at Tennessee Tech nological University in Cookeville, Tennessee, a Lecture Series on Clifford Ge ometric Algebras was presented. Its goal was to to provide beginning graduate students in mathematics and physics and other newcomers to the field with no prior knowledge of Clifford algebras with a bird's eye view of Clifford geometric algebras and their applications. The lectures were given by some of the field's most recognized experts. The enthusiastic response of the more than 80 partici pants in the Lecture Series, many of whom were graduate students or postdocs, encouraged us to publish the expanded lectures as chapters in book form</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Methods in Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Clifford-Algebra</subfield><subfield code="0">(DE-588)4199958-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Clifford-Algebra</subfield><subfield code="0">(DE-588)4199958-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Baylis, William E.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Branson, Thomas</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lounesto, Pertti</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Porteous, Ian</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ryan, John</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Selig, J. M.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sobczyk, Garret</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Abłamowicz, Rafal</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sobczyk, Garret</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-0-8176-8190-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854618</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419201 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9780817681906 9780817632571 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854618 |
oclc_num | 879621274 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVII, 221p. 25 illus) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Birkhäuser Boston |
record_format | marc |
spelling | Ablamowicz, Rafal Verfasser aut Lectures on Clifford (Geometric) Algebras and Applications by Rafal Ablamowicz, William E. Baylis, Thomas Branson, Pertti Lounesto, Ian Porteous, John Ryan, J. M. Selig, Garret Sobczyk ; edited by Rafal Abłamowicz, Garret Sobczyk Boston, MA Birkhäuser Boston 2004 1 Online-Ressource (XVII, 221p. 25 illus) txt rdacontent c rdamedia cr rdacarrier Advances in technology over the last 25 years have created a situation in which workers in diverse areas of computerscience and engineering have found it neces sary to increase their knowledge of related fields in order to make further progress. Clifford (geometric) algebra offers a unified algebraic framework for the direct expression of the geometric ideas underlying the great mathematical theories of linear and multilinear algebra, projective and affine geometries, and differential geometry. Indeed, for many people working in this area, geometric algebra is the natural extension of the real number system to include the concept of direction. The familiar complex numbers of the plane and the quaternions of four dimen sions are examples of lower-dimensional geometric algebras. During "The 6th International Conference on Clifford Algebras and their Ap plications in Mathematical Physics" held May 20--25, 2002, at Tennessee Tech nological University in Cookeville, Tennessee, a Lecture Series on Clifford Ge ometric Algebras was presented. Its goal was to to provide beginning graduate students in mathematics and physics and other newcomers to the field with no prior knowledge of Clifford algebras with a bird's eye view of Clifford geometric algebras and their applications. The lectures were given by some of the field's most recognized experts. The enthusiastic response of the more than 80 partici pants in the Lecture Series, many of whom were graduate students or postdocs, encouraged us to publish the expanded lectures as chapters in book form Mathematics Algebra Global differential geometry Mathematical physics Differential Geometry Mathematical Methods in Physics Mathematik Mathematische Physik Clifford-Algebra (DE-588)4199958-7 gnd rswk-swf Clifford-Algebra (DE-588)4199958-7 s 1\p DE-604 Baylis, William E. Sonstige oth Branson, Thomas Sonstige oth Lounesto, Pertti Sonstige oth Porteous, Ian Sonstige oth Ryan, John Sonstige oth Selig, J. M. Sonstige oth Sobczyk, Garret Sonstige oth Abłamowicz, Rafal Sonstige oth https://doi.org/10.1007/978-0-8176-8190-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Ablamowicz, Rafal Lectures on Clifford (Geometric) Algebras and Applications Mathematics Algebra Global differential geometry Mathematical physics Differential Geometry Mathematical Methods in Physics Mathematik Mathematische Physik Clifford-Algebra (DE-588)4199958-7 gnd |
subject_GND | (DE-588)4199958-7 |
title | Lectures on Clifford (Geometric) Algebras and Applications |
title_auth | Lectures on Clifford (Geometric) Algebras and Applications |
title_exact_search | Lectures on Clifford (Geometric) Algebras and Applications |
title_full | Lectures on Clifford (Geometric) Algebras and Applications by Rafal Ablamowicz, William E. Baylis, Thomas Branson, Pertti Lounesto, Ian Porteous, John Ryan, J. M. Selig, Garret Sobczyk ; edited by Rafal Abłamowicz, Garret Sobczyk |
title_fullStr | Lectures on Clifford (Geometric) Algebras and Applications by Rafal Ablamowicz, William E. Baylis, Thomas Branson, Pertti Lounesto, Ian Porteous, John Ryan, J. M. Selig, Garret Sobczyk ; edited by Rafal Abłamowicz, Garret Sobczyk |
title_full_unstemmed | Lectures on Clifford (Geometric) Algebras and Applications by Rafal Ablamowicz, William E. Baylis, Thomas Branson, Pertti Lounesto, Ian Porteous, John Ryan, J. M. Selig, Garret Sobczyk ; edited by Rafal Abłamowicz, Garret Sobczyk |
title_short | Lectures on Clifford (Geometric) Algebras and Applications |
title_sort | lectures on clifford geometric algebras and applications |
topic | Mathematics Algebra Global differential geometry Mathematical physics Differential Geometry Mathematical Methods in Physics Mathematik Mathematische Physik Clifford-Algebra (DE-588)4199958-7 gnd |
topic_facet | Mathematics Algebra Global differential geometry Mathematical physics Differential Geometry Mathematical Methods in Physics Mathematik Mathematische Physik Clifford-Algebra |
url | https://doi.org/10.1007/978-0-8176-8190-6 |
work_keys_str_mv | AT ablamowiczrafal lecturesoncliffordgeometricalgebrasandapplications AT bayliswilliame lecturesoncliffordgeometricalgebrasandapplications AT bransonthomas lecturesoncliffordgeometricalgebrasandapplications AT lounestopertti lecturesoncliffordgeometricalgebrasandapplications AT porteousian lecturesoncliffordgeometricalgebrasandapplications AT ryanjohn lecturesoncliffordgeometricalgebrasandapplications AT seligjm lecturesoncliffordgeometricalgebrasandapplications AT sobczykgarret lecturesoncliffordgeometricalgebrasandapplications AT abłamowiczrafal lecturesoncliffordgeometricalgebrasandapplications |