Arithmetic of Higher-Dimensional Algebraic Varieties:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
2004
|
Ausgabe: | 1 |
Schriftenreihe: | Progress in Mathematics
226 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | One of the great successes of twentieth century mathematics has been the remarkable qualitative understanding of rational and integral points on curves, gleaned in part through the theorems of Mordell, Weil, Siegel, and Faltings. It has become clear that the study of rational and integral points has deep connections to other branches of mathematics: complex algebraic geometry, Galois and étale cohomology, transcendence theory and diophantine approximation, harmonic analysis, automorphic forms, and analytic number theory. This text, which focuses on higher-dimensional varieties, provides precisely such an interdisciplinary view of the subject. It is a digest of research and survey papers by leading specialists; the book documents current knowledge in higher-dimensional arithmetic and gives indications for future research. It will be valuable not only to practitioners in the field, but to a wide audience of mathematicians and graduate students with an interest in arithmetic geometry. Contributors: Batyrev, V.V.; Broberg, N.; Colliot-Thélène, J-L.; Ellenberg, J.S.; Gille, P.; Graber, T.; Harari, D.; Harris, J.; Hassett, B.; Heath-Brown, R.; Mazur, B.; Peyre, E.; Poonen, B.; Popov, O.N.; Raskind, W.; Salberger, P.; Scharaschkin, V.; Shalika, J.; Starr, J.; Swinnerton-Dyer, P.; Takloo-Bighash, R.; Tschinkel, Y.: Voloch, J.F.; Wittenberg, O. |
Beschreibung: | 1 Online-Ressource (XVI, 287 p) |
ISBN: | 9780817681708 9781461264712 |
DOI: | 10.1007/978-0-8176-8170-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042419191 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2004 |||| o||u| ||||||eng d | ||
020 | |a 9780817681708 |c Online |9 978-0-8176-8170-8 | ||
020 | |a 9781461264712 |c Print |9 978-1-4612-6471-2 | ||
024 | 7 | |a 10.1007/978-0-8176-8170-8 |2 doi | |
035 | |a (OCoLC)869854588 | ||
035 | |a (DE-599)BVBBV042419191 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.7 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Poonen, Björn |e Verfasser |4 aut | |
245 | 1 | 0 | |a Arithmetic of Higher-Dimensional Algebraic Varieties |c edited by Björn Poonen, Yuri Tschinkel |
250 | |a 1 | ||
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 2004 | |
300 | |a 1 Online-Ressource (XVI, 287 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Progress in Mathematics |v 226 | |
500 | |a One of the great successes of twentieth century mathematics has been the remarkable qualitative understanding of rational and integral points on curves, gleaned in part through the theorems of Mordell, Weil, Siegel, and Faltings. It has become clear that the study of rational and integral points has deep connections to other branches of mathematics: complex algebraic geometry, Galois and étale cohomology, transcendence theory and diophantine approximation, harmonic analysis, automorphic forms, and analytic number theory. This text, which focuses on higher-dimensional varieties, provides precisely such an interdisciplinary view of the subject. It is a digest of research and survey papers by leading specialists; the book documents current knowledge in higher-dimensional arithmetic and gives indications for future research. It will be valuable not only to practitioners in the field, but to a wide audience of mathematicians and graduate students with an interest in arithmetic geometry. Contributors: Batyrev, V.V.; Broberg, N.; Colliot-Thélène, J-L.; Ellenberg, J.S.; Gille, P.; Graber, T.; Harari, D.; Harris, J.; Hassett, B.; Heath-Brown, R.; Mazur, B.; Peyre, E.; Poonen, B.; Popov, O.N.; Raskind, W.; Salberger, P.; Scharaschkin, V.; Shalika, J.; Starr, J.; Swinnerton-Dyer, P.; Takloo-Bighash, R.; Tschinkel, Y.: Voloch, J.F.; Wittenberg, O. | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry, algebraic | |
650 | 4 | |a Field theory (Physics) | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Number theory | |
650 | 4 | |a Number Theory | |
650 | 4 | |a Algebraic Geometry | |
650 | 4 | |a Field Theory and Polynomials | |
650 | 4 | |a Several Complex Variables and Analytic Spaces | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Dimension n |0 (DE-588)4309313-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische Mannigfaltigkeit |0 (DE-588)4128509-8 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Algebraische Mannigfaltigkeit |0 (DE-588)4128509-8 |D s |
689 | 0 | 1 | |a Dimension n |0 (DE-588)4309313-9 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
700 | 1 | |a Tschinkel, Yuri |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-0-8176-8170-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854608 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153089542848512 |
---|---|
any_adam_object | |
author | Poonen, Björn |
author_facet | Poonen, Björn |
author_role | aut |
author_sort | Poonen, Björn |
author_variant | b p bp |
building | Verbundindex |
bvnumber | BV042419191 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)869854588 (DE-599)BVBBV042419191 |
dewey-full | 512.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7 |
dewey-search | 512.7 |
dewey-sort | 3512.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-0-8176-8170-8 |
edition | 1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03511nmm a2200601zcb4500</leader><controlfield tag="001">BV042419191</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817681708</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-8176-8170-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461264712</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-6471-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-0-8176-8170-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)869854588</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419191</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Poonen, Björn</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Arithmetic of Higher-Dimensional Algebraic Varieties</subfield><subfield code="c">edited by Björn Poonen, Yuri Tschinkel</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVI, 287 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Progress in Mathematics</subfield><subfield code="v">226</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">One of the great successes of twentieth century mathematics has been the remarkable qualitative understanding of rational and integral points on curves, gleaned in part through the theorems of Mordell, Weil, Siegel, and Faltings. It has become clear that the study of rational and integral points has deep connections to other branches of mathematics: complex algebraic geometry, Galois and étale cohomology, transcendence theory and diophantine approximation, harmonic analysis, automorphic forms, and analytic number theory. This text, which focuses on higher-dimensional varieties, provides precisely such an interdisciplinary view of the subject. It is a digest of research and survey papers by leading specialists; the book documents current knowledge in higher-dimensional arithmetic and gives indications for future research. It will be valuable not only to practitioners in the field, but to a wide audience of mathematicians and graduate students with an interest in arithmetic geometry. Contributors: Batyrev, V.V.; Broberg, N.; Colliot-Thélène, J-L.; Ellenberg, J.S.; Gille, P.; Graber, T.; Harari, D.; Harris, J.; Hassett, B.; Heath-Brown, R.; Mazur, B.; Peyre, E.; Poonen, B.; Popov, O.N.; Raskind, W.; Salberger, P.; Scharaschkin, V.; Shalika, J.; Starr, J.; Swinnerton-Dyer, P.; Takloo-Bighash, R.; Tschinkel, Y.: Voloch, J.F.; Wittenberg, O.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field theory (Physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field Theory and Polynomials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Several Complex Variables and Analytic Spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dimension n</subfield><subfield code="0">(DE-588)4309313-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4128509-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebraische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4128509-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Dimension n</subfield><subfield code="0">(DE-588)4309313-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tschinkel, Yuri</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-0-8176-8170-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854608</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV042419191 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9780817681708 9781461264712 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854608 |
oclc_num | 869854588 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVI, 287 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Birkhäuser Boston |
record_format | marc |
series2 | Progress in Mathematics |
spelling | Poonen, Björn Verfasser aut Arithmetic of Higher-Dimensional Algebraic Varieties edited by Björn Poonen, Yuri Tschinkel 1 Boston, MA Birkhäuser Boston 2004 1 Online-Ressource (XVI, 287 p) txt rdacontent c rdamedia cr rdacarrier Progress in Mathematics 226 One of the great successes of twentieth century mathematics has been the remarkable qualitative understanding of rational and integral points on curves, gleaned in part through the theorems of Mordell, Weil, Siegel, and Faltings. It has become clear that the study of rational and integral points has deep connections to other branches of mathematics: complex algebraic geometry, Galois and étale cohomology, transcendence theory and diophantine approximation, harmonic analysis, automorphic forms, and analytic number theory. This text, which focuses on higher-dimensional varieties, provides precisely such an interdisciplinary view of the subject. It is a digest of research and survey papers by leading specialists; the book documents current knowledge in higher-dimensional arithmetic and gives indications for future research. It will be valuable not only to practitioners in the field, but to a wide audience of mathematicians and graduate students with an interest in arithmetic geometry. Contributors: Batyrev, V.V.; Broberg, N.; Colliot-Thélène, J-L.; Ellenberg, J.S.; Gille, P.; Graber, T.; Harari, D.; Harris, J.; Hassett, B.; Heath-Brown, R.; Mazur, B.; Peyre, E.; Poonen, B.; Popov, O.N.; Raskind, W.; Salberger, P.; Scharaschkin, V.; Shalika, J.; Starr, J.; Swinnerton-Dyer, P.; Takloo-Bighash, R.; Tschinkel, Y.: Voloch, J.F.; Wittenberg, O. Mathematics Geometry, algebraic Field theory (Physics) Differential equations, partial Number theory Number Theory Algebraic Geometry Field Theory and Polynomials Several Complex Variables and Analytic Spaces Mathematik Dimension n (DE-588)4309313-9 gnd rswk-swf Algebraische Mannigfaltigkeit (DE-588)4128509-8 gnd rswk-swf 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content Algebraische Mannigfaltigkeit (DE-588)4128509-8 s Dimension n (DE-588)4309313-9 s 2\p DE-604 Tschinkel, Yuri Sonstige oth https://doi.org/10.1007/978-0-8176-8170-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Poonen, Björn Arithmetic of Higher-Dimensional Algebraic Varieties Mathematics Geometry, algebraic Field theory (Physics) Differential equations, partial Number theory Number Theory Algebraic Geometry Field Theory and Polynomials Several Complex Variables and Analytic Spaces Mathematik Dimension n (DE-588)4309313-9 gnd Algebraische Mannigfaltigkeit (DE-588)4128509-8 gnd |
subject_GND | (DE-588)4309313-9 (DE-588)4128509-8 (DE-588)4143413-4 |
title | Arithmetic of Higher-Dimensional Algebraic Varieties |
title_auth | Arithmetic of Higher-Dimensional Algebraic Varieties |
title_exact_search | Arithmetic of Higher-Dimensional Algebraic Varieties |
title_full | Arithmetic of Higher-Dimensional Algebraic Varieties edited by Björn Poonen, Yuri Tschinkel |
title_fullStr | Arithmetic of Higher-Dimensional Algebraic Varieties edited by Björn Poonen, Yuri Tschinkel |
title_full_unstemmed | Arithmetic of Higher-Dimensional Algebraic Varieties edited by Björn Poonen, Yuri Tschinkel |
title_short | Arithmetic of Higher-Dimensional Algebraic Varieties |
title_sort | arithmetic of higher dimensional algebraic varieties |
topic | Mathematics Geometry, algebraic Field theory (Physics) Differential equations, partial Number theory Number Theory Algebraic Geometry Field Theory and Polynomials Several Complex Variables and Analytic Spaces Mathematik Dimension n (DE-588)4309313-9 gnd Algebraische Mannigfaltigkeit (DE-588)4128509-8 gnd |
topic_facet | Mathematics Geometry, algebraic Field theory (Physics) Differential equations, partial Number theory Number Theory Algebraic Geometry Field Theory and Polynomials Several Complex Variables and Analytic Spaces Mathematik Dimension n Algebraische Mannigfaltigkeit Aufsatzsammlung |
url | https://doi.org/10.1007/978-0-8176-8170-8 |
work_keys_str_mv | AT poonenbjorn arithmeticofhigherdimensionalalgebraicvarieties AT tschinkelyuri arithmeticofhigherdimensionalalgebraicvarieties |