Wavelets Through a Looking Glass: The World of the Spectrum
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
2002
|
Schriftenreihe: | Applied and Numerical Harmonic Analysis
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | ADVANCES in communication, sensing, and computational power have led to an explosion of data. The size and varied formats for these datasets challenge existing techniques for transmission, storage, querying, display, and numerical manipulation. This leads to the paradoxical situation where experiments or numerical compulations produce rich, detailed information, for which, at this point, no adequate analysis tools exist. -Conference announcement, Joint IDR-1/v!A Workshop on Ideal Data Representaticm, Minneapolis, R. Delore and A. Ron, organizers Wavelet theory stands on the interface between signal processing and harmonic analysis, the mathematical tools involved in digitizing continuous data with a view to storage, and thc synthesis process, recreating, for example, a picturc or time signal from stored data. The algorithms involved go under the name of filter banks, and their spectacular efficiency derives in part from the use of hidden self-similarity, relative to some scaling operation, in the data being analyzed. Observations or time signals are functions, and classes of functions make up linear spaces. Numerical correlations add structure to the spaces at hand, Hilbert spaces. There are operators in the spaces deriving from the discrete data and others from the spaces of continuous signals. The first type are good for computations, while the second reflect the real world. The operators between the two are the focus of the present monograph. Relations between operations in the discrete xn Preface and continuous domains are studied as symbols |
Beschreibung: | 1 Online-Ressource (XXI, 398 p) |
ISBN: | 9780817681449 9781461264156 |
ISSN: | 2296-5009 |
DOI: | 10.1007/978-0-8176-8144-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419183 | ||
003 | DE-604 | ||
005 | 20161121 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2002 |||| o||u| ||||||eng d | ||
020 | |a 9780817681449 |c Online |9 978-0-8176-8144-9 | ||
020 | |a 9781461264156 |c Print |9 978-1-4612-6415-6 | ||
024 | 7 | |a 10.1007/978-0-8176-8144-9 |2 doi | |
035 | |a (OCoLC)864741304 | ||
035 | |a (DE-599)BVBBV042419183 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.55 |2 23 | |
082 | 0 | |a 512.482 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Bratteli, Ola |e Verfasser |4 aut | |
245 | 1 | 0 | |a Wavelets Through a Looking Glass |b The World of the Spectrum |c by Ola Bratteli, Palle Jorgensen |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 2002 | |
300 | |a 1 Online-Ressource (XXI, 398 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Applied and Numerical Harmonic Analysis |x 2296-5009 | |
500 | |a ADVANCES in communication, sensing, and computational power have led to an explosion of data. The size and varied formats for these datasets challenge existing techniques for transmission, storage, querying, display, and numerical manipulation. This leads to the paradoxical situation where experiments or numerical compulations produce rich, detailed information, for which, at this point, no adequate analysis tools exist. -Conference announcement, Joint IDR-1/v!A Workshop on Ideal Data Representaticm, Minneapolis, R. Delore and A. Ron, organizers Wavelet theory stands on the interface between signal processing and harmonic analysis, the mathematical tools involved in digitizing continuous data with a view to storage, and thc synthesis process, recreating, for example, a picturc or time signal from stored data. The algorithms involved go under the name of filter banks, and their spectacular efficiency derives in part from the use of hidden self-similarity, relative to some scaling operation, in the data being analyzed. Observations or time signals are functions, and classes of functions make up linear spaces. Numerical correlations add structure to the spaces at hand, Hilbert spaces. There are operators in the spaces deriving from the discrete data and others from the spaces of continuous signals. The first type are good for computations, while the second reflect the real world. The operators between the two are the focus of the present monograph. Relations between operations in the discrete xn Preface and continuous domains are studied as symbols | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Electronic data processing | |
650 | 4 | |a Topological Groups | |
650 | 4 | |a Computer engineering | |
650 | 4 | |a Topological Groups, Lie Groups | |
650 | 4 | |a Numeric Computing | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Electrical Engineering | |
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Spektraltheorie |0 (DE-588)4116561-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wavelet |0 (DE-588)4215427-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Spektraltheorie |0 (DE-588)4116561-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Wavelet |0 (DE-588)4215427-3 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Jørgensen, Palle E. T. |d 1947- |e Sonstige |0 (DE-588)124805515 |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-0-8176-8144-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854600 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153089521876992 |
---|---|
any_adam_object | |
author | Bratteli, Ola |
author_GND | (DE-588)124805515 |
author_facet | Bratteli, Ola |
author_role | aut |
author_sort | Bratteli, Ola |
author_variant | o b ob |
building | Verbundindex |
bvnumber | BV042419183 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)864741304 (DE-599)BVBBV042419183 |
dewey-full | 512.55 512.482 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.55 512.482 |
dewey-search | 512.55 512.482 |
dewey-sort | 3512.55 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-0-8176-8144-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03699nmm a2200601zc 4500</leader><controlfield tag="001">BV042419183</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20161121 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817681449</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-8176-8144-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461264156</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-6415-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-0-8176-8144-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864741304</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419183</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.55</subfield><subfield code="2">23</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.482</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bratteli, Ola</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Wavelets Through a Looking Glass</subfield><subfield code="b">The World of the Spectrum</subfield><subfield code="c">by Ola Bratteli, Palle Jorgensen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXI, 398 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Applied and Numerical Harmonic Analysis</subfield><subfield code="x">2296-5009</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">ADVANCES in communication, sensing, and computational power have led to an explosion of data. The size and varied formats for these datasets challenge existing techniques for transmission, storage, querying, display, and numerical manipulation. This leads to the paradoxical situation where experiments or numerical compulations produce rich, detailed information, for which, at this point, no adequate analysis tools exist. -Conference announcement, Joint IDR-1/v!A Workshop on Ideal Data Representaticm, Minneapolis, R. Delore and A. Ron, organizers Wavelet theory stands on the interface between signal processing and harmonic analysis, the mathematical tools involved in digitizing continuous data with a view to storage, and thc synthesis process, recreating, for example, a picturc or time signal from stored data. The algorithms involved go under the name of filter banks, and their spectacular efficiency derives in part from the use of hidden self-similarity, relative to some scaling operation, in the data being analyzed. Observations or time signals are functions, and classes of functions make up linear spaces. Numerical correlations add structure to the spaces at hand, Hilbert spaces. There are operators in the spaces deriving from the discrete data and others from the spaces of continuous signals. The first type are good for computations, while the second reflect the real world. The operators between the two are the focus of the present monograph. Relations between operations in the discrete xn Preface and continuous domains are studied as symbols</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups, Lie Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numeric Computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wavelet</subfield><subfield code="0">(DE-588)4215427-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Wavelet</subfield><subfield code="0">(DE-588)4215427-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jørgensen, Palle E. T.</subfield><subfield code="d">1947-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)124805515</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-0-8176-8144-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854600</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419183 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9780817681449 9781461264156 |
issn | 2296-5009 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854600 |
oclc_num | 864741304 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XXI, 398 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Birkhäuser Boston |
record_format | marc |
series2 | Applied and Numerical Harmonic Analysis |
spelling | Bratteli, Ola Verfasser aut Wavelets Through a Looking Glass The World of the Spectrum by Ola Bratteli, Palle Jorgensen Boston, MA Birkhäuser Boston 2002 1 Online-Ressource (XXI, 398 p) txt rdacontent c rdamedia cr rdacarrier Applied and Numerical Harmonic Analysis 2296-5009 ADVANCES in communication, sensing, and computational power have led to an explosion of data. The size and varied formats for these datasets challenge existing techniques for transmission, storage, querying, display, and numerical manipulation. This leads to the paradoxical situation where experiments or numerical compulations produce rich, detailed information, for which, at this point, no adequate analysis tools exist. -Conference announcement, Joint IDR-1/v!A Workshop on Ideal Data Representaticm, Minneapolis, R. Delore and A. Ron, organizers Wavelet theory stands on the interface between signal processing and harmonic analysis, the mathematical tools involved in digitizing continuous data with a view to storage, and thc synthesis process, recreating, for example, a picturc or time signal from stored data. The algorithms involved go under the name of filter banks, and their spectacular efficiency derives in part from the use of hidden self-similarity, relative to some scaling operation, in the data being analyzed. Observations or time signals are functions, and classes of functions make up linear spaces. Numerical correlations add structure to the spaces at hand, Hilbert spaces. There are operators in the spaces deriving from the discrete data and others from the spaces of continuous signals. The first type are good for computations, while the second reflect the real world. The operators between the two are the focus of the present monograph. Relations between operations in the discrete xn Preface and continuous domains are studied as symbols Mathematics Electronic data processing Topological Groups Computer engineering Topological Groups, Lie Groups Numeric Computing Applications of Mathematics Electrical Engineering Datenverarbeitung Mathematik Spektraltheorie (DE-588)4116561-5 gnd rswk-swf Wavelet (DE-588)4215427-3 gnd rswk-swf Spektraltheorie (DE-588)4116561-5 s 1\p DE-604 Wavelet (DE-588)4215427-3 s 2\p DE-604 Jørgensen, Palle E. T. 1947- Sonstige (DE-588)124805515 oth https://doi.org/10.1007/978-0-8176-8144-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Bratteli, Ola Wavelets Through a Looking Glass The World of the Spectrum Mathematics Electronic data processing Topological Groups Computer engineering Topological Groups, Lie Groups Numeric Computing Applications of Mathematics Electrical Engineering Datenverarbeitung Mathematik Spektraltheorie (DE-588)4116561-5 gnd Wavelet (DE-588)4215427-3 gnd |
subject_GND | (DE-588)4116561-5 (DE-588)4215427-3 |
title | Wavelets Through a Looking Glass The World of the Spectrum |
title_auth | Wavelets Through a Looking Glass The World of the Spectrum |
title_exact_search | Wavelets Through a Looking Glass The World of the Spectrum |
title_full | Wavelets Through a Looking Glass The World of the Spectrum by Ola Bratteli, Palle Jorgensen |
title_fullStr | Wavelets Through a Looking Glass The World of the Spectrum by Ola Bratteli, Palle Jorgensen |
title_full_unstemmed | Wavelets Through a Looking Glass The World of the Spectrum by Ola Bratteli, Palle Jorgensen |
title_short | Wavelets Through a Looking Glass |
title_sort | wavelets through a looking glass the world of the spectrum |
title_sub | The World of the Spectrum |
topic | Mathematics Electronic data processing Topological Groups Computer engineering Topological Groups, Lie Groups Numeric Computing Applications of Mathematics Electrical Engineering Datenverarbeitung Mathematik Spektraltheorie (DE-588)4116561-5 gnd Wavelet (DE-588)4215427-3 gnd |
topic_facet | Mathematics Electronic data processing Topological Groups Computer engineering Topological Groups, Lie Groups Numeric Computing Applications of Mathematics Electrical Engineering Datenverarbeitung Mathematik Spektraltheorie Wavelet |
url | https://doi.org/10.1007/978-0-8176-8144-9 |
work_keys_str_mv | AT bratteliola waveletsthroughalookingglasstheworldofthespectrum AT jørgensenpalleet waveletsthroughalookingglasstheworldofthespectrum |