A Primer of Real Analytic Functions:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
2002
|
Ausgabe: | Second Edition |
Schriftenreihe: | Birkhäuser Advanced Texts, Basler Lehrbücher
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | It is a pleasure and a privilege to write this new edition of A Primer of Real Analytic Functions. The theory of real analytic functions is the wellspring of mathematical analysis. It is remarkable that this is the first book on the subject, and we want to keep it up to date and as correct as possible. With these thoughts in mind, we have utilized helpful remarks and criticisms from many readers and have thereby made numerous emendations. We have also added material. There is a now a treatment of the Weierstrass preparation theorem, a new argument to establish Hensel's lemma and Puiseux's theorem, a new treatment of Faa di Bruno's formula, a thorough discussion of topologies on spaces of real analytic functions, and a second independent argument for the implicit function theorem. We trust that these new topics will make the book more complete, and hence a more useful reference. It is a pleasure to thank our editor, Ann Kostant of Birkhäuser Boston, for making the publishing process as smooth and trouble-free as possible. We are grateful for useful communications from the readers of our first edition, and we look forward to further constructive feedback |
Beschreibung: | 1 Online-Ressource (XIII, 209 p) |
ISBN: | 9780817681340 9781461264125 |
DOI: | 10.1007/978-0-8176-8134-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419178 | ||
003 | DE-604 | ||
005 | 20161209 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2002 |||| o||u| ||||||eng d | ||
020 | |a 9780817681340 |c Online |9 978-0-8176-8134-0 | ||
020 | |a 9781461264125 |c Print |9 978-1-4612-6412-5 | ||
024 | 7 | |a 10.1007/978-0-8176-8134-0 |2 doi | |
035 | |a (OCoLC)724720774 | ||
035 | |a (DE-599)BVBBV042419178 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Krantz, Steven G. |d 1951- |e Verfasser |0 (DE-588)130535907 |4 aut | |
245 | 1 | 0 | |a A Primer of Real Analytic Functions |c by Steven G. Krantz, Harold R. Parks |
250 | |a Second Edition | ||
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 2002 | |
300 | |a 1 Online-Ressource (XIII, 209 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Birkhäuser Advanced Texts, Basler Lehrbücher | |
500 | |a It is a pleasure and a privilege to write this new edition of A Primer of Real Analytic Functions. The theory of real analytic functions is the wellspring of mathematical analysis. It is remarkable that this is the first book on the subject, and we want to keep it up to date and as correct as possible. With these thoughts in mind, we have utilized helpful remarks and criticisms from many readers and have thereby made numerous emendations. We have also added material. There is a now a treatment of the Weierstrass preparation theorem, a new argument to establish Hensel's lemma and Puiseux's theorem, a new treatment of Faa di Bruno's formula, a thorough discussion of topologies on spaces of real analytic functions, and a second independent argument for the implicit function theorem. We trust that these new topics will make the book more complete, and hence a more useful reference. It is a pleasure to thank our editor, Ann Kostant of Birkhäuser Boston, for making the publishing process as smooth and trouble-free as possible. We are grateful for useful communications from the readers of our first edition, and we look forward to further constructive feedback | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry, algebraic | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Functions of complex variables | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Analysis | |
650 | 4 | |a Algebraic Geometry | |
650 | 4 | |a Functions of a Complex Variable | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Reelle Funktion |0 (DE-588)4048918-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Analytische Funktion |0 (DE-588)4142348-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Reelle Funktion |0 (DE-588)4048918-8 |D s |
689 | 0 | 1 | |a Analytische Funktion |0 (DE-588)4142348-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Parks, Harold R. |d 1949- |e Sonstige |0 (DE-588)138161887 |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-0-8176-8134-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854595 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153089507196928 |
---|---|
any_adam_object | |
author | Krantz, Steven G. 1951- |
author_GND | (DE-588)130535907 (DE-588)138161887 |
author_facet | Krantz, Steven G. 1951- |
author_role | aut |
author_sort | Krantz, Steven G. 1951- |
author_variant | s g k sg sgk |
building | Verbundindex |
bvnumber | BV042419178 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)724720774 (DE-599)BVBBV042419178 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-0-8176-8134-0 |
edition | Second Edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03234nmm a2200577zc 4500</leader><controlfield tag="001">BV042419178</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20161209 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817681340</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-8176-8134-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461264125</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-6412-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-0-8176-8134-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)724720774</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419178</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Krantz, Steven G.</subfield><subfield code="d">1951-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)130535907</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Primer of Real Analytic Functions</subfield><subfield code="c">by Steven G. Krantz, Harold R. Parks</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 209 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Birkhäuser Advanced Texts, Basler Lehrbücher</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">It is a pleasure and a privilege to write this new edition of A Primer of Real Analytic Functions. The theory of real analytic functions is the wellspring of mathematical analysis. It is remarkable that this is the first book on the subject, and we want to keep it up to date and as correct as possible. With these thoughts in mind, we have utilized helpful remarks and criticisms from many readers and have thereby made numerous emendations. We have also added material. There is a now a treatment of the Weierstrass preparation theorem, a new argument to establish Hensel's lemma and Puiseux's theorem, a new treatment of Faa di Bruno's formula, a thorough discussion of topologies on spaces of real analytic functions, and a second independent argument for the implicit function theorem. We trust that these new topics will make the book more complete, and hence a more useful reference. It is a pleasure to thank our editor, Ann Kostant of Birkhäuser Boston, for making the publishing process as smooth and trouble-free as possible. We are grateful for useful communications from the readers of our first edition, and we look forward to further constructive feedback</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of complex variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of a Complex Variable</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reelle Funktion</subfield><subfield code="0">(DE-588)4048918-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analytische Funktion</subfield><subfield code="0">(DE-588)4142348-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Reelle Funktion</subfield><subfield code="0">(DE-588)4048918-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Analytische Funktion</subfield><subfield code="0">(DE-588)4142348-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Parks, Harold R.</subfield><subfield code="d">1949-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)138161887</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-0-8176-8134-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854595</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419178 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9780817681340 9781461264125 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854595 |
oclc_num | 724720774 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIII, 209 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Birkhäuser Boston |
record_format | marc |
series2 | Birkhäuser Advanced Texts, Basler Lehrbücher |
spelling | Krantz, Steven G. 1951- Verfasser (DE-588)130535907 aut A Primer of Real Analytic Functions by Steven G. Krantz, Harold R. Parks Second Edition Boston, MA Birkhäuser Boston 2002 1 Online-Ressource (XIII, 209 p) txt rdacontent c rdamedia cr rdacarrier Birkhäuser Advanced Texts, Basler Lehrbücher It is a pleasure and a privilege to write this new edition of A Primer of Real Analytic Functions. The theory of real analytic functions is the wellspring of mathematical analysis. It is remarkable that this is the first book on the subject, and we want to keep it up to date and as correct as possible. With these thoughts in mind, we have utilized helpful remarks and criticisms from many readers and have thereby made numerous emendations. We have also added material. There is a now a treatment of the Weierstrass preparation theorem, a new argument to establish Hensel's lemma and Puiseux's theorem, a new treatment of Faa di Bruno's formula, a thorough discussion of topologies on spaces of real analytic functions, and a second independent argument for the implicit function theorem. We trust that these new topics will make the book more complete, and hence a more useful reference. It is a pleasure to thank our editor, Ann Kostant of Birkhäuser Boston, for making the publishing process as smooth and trouble-free as possible. We are grateful for useful communications from the readers of our first edition, and we look forward to further constructive feedback Mathematics Geometry, algebraic Global analysis (Mathematics) Functions of complex variables Differential equations, partial Analysis Algebraic Geometry Functions of a Complex Variable Partial Differential Equations Mathematik Reelle Funktion (DE-588)4048918-8 gnd rswk-swf Analytische Funktion (DE-588)4142348-3 gnd rswk-swf Reelle Funktion (DE-588)4048918-8 s Analytische Funktion (DE-588)4142348-3 s 1\p DE-604 Parks, Harold R. 1949- Sonstige (DE-588)138161887 oth https://doi.org/10.1007/978-0-8176-8134-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Krantz, Steven G. 1951- A Primer of Real Analytic Functions Mathematics Geometry, algebraic Global analysis (Mathematics) Functions of complex variables Differential equations, partial Analysis Algebraic Geometry Functions of a Complex Variable Partial Differential Equations Mathematik Reelle Funktion (DE-588)4048918-8 gnd Analytische Funktion (DE-588)4142348-3 gnd |
subject_GND | (DE-588)4048918-8 (DE-588)4142348-3 |
title | A Primer of Real Analytic Functions |
title_auth | A Primer of Real Analytic Functions |
title_exact_search | A Primer of Real Analytic Functions |
title_full | A Primer of Real Analytic Functions by Steven G. Krantz, Harold R. Parks |
title_fullStr | A Primer of Real Analytic Functions by Steven G. Krantz, Harold R. Parks |
title_full_unstemmed | A Primer of Real Analytic Functions by Steven G. Krantz, Harold R. Parks |
title_short | A Primer of Real Analytic Functions |
title_sort | a primer of real analytic functions |
topic | Mathematics Geometry, algebraic Global analysis (Mathematics) Functions of complex variables Differential equations, partial Analysis Algebraic Geometry Functions of a Complex Variable Partial Differential Equations Mathematik Reelle Funktion (DE-588)4048918-8 gnd Analytische Funktion (DE-588)4142348-3 gnd |
topic_facet | Mathematics Geometry, algebraic Global analysis (Mathematics) Functions of complex variables Differential equations, partial Analysis Algebraic Geometry Functions of a Complex Variable Partial Differential Equations Mathematik Reelle Funktion Analytische Funktion |
url | https://doi.org/10.1007/978-0-8176-8134-0 |
work_keys_str_mv | AT krantzsteveng aprimerofrealanalyticfunctions AT parksharoldr aprimerofrealanalyticfunctions |