A Handbook of Real Variables: With Applications to Differential Equations and Fourier Analysis
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
2004
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The subject of real analysis dates to the mid-nineteenth century - the days of Riemann and Cauchy and Weierstrass. Real analysis grew up as a way to make the calculus rigorous. Today the two subjects are intertwined in most people's minds. Yet calculus is only the first step of a long journey, and real analysis is one of the first great triumphs along that road. In real analysis we learn the rigorous theories of sequences and series, and the profound new insights that these tools make possible. We learn of the completeness of the real number system, and how this property makes the real numbers the natural set of limit points for the rational numbers. We learn of compact sets and uniform convergence. The great classical examples, such as the Weierstrass nowhere-differentiable function and the Cantor set, are part of the bedrock of the subject. Of course complete and rigorous treatments of the derivative and the integral are essential parts of this process. The Weierstrass approximation theorem, the Riemann integral, the Cauchy property for sequences, and many other deep ideas round out the picture of a powerful set of tools |
Beschreibung: | 1 Online-Ressource (XIII, 201 p) |
ISBN: | 9780817681289 9781461264095 |
DOI: | 10.1007/978-0-8176-8128-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419175 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2004 |||| o||u| ||||||eng d | ||
020 | |a 9780817681289 |c Online |9 978-0-8176-8128-9 | ||
020 | |a 9781461264095 |c Print |9 978-1-4612-6409-5 | ||
024 | 7 | |a 10.1007/978-0-8176-8128-9 |2 doi | |
035 | |a (OCoLC)725205846 | ||
035 | |a (DE-599)BVBBV042419175 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.7 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Krantz, Steven G. |e Verfasser |4 aut | |
245 | 1 | 0 | |a A Handbook of Real Variables |b With Applications to Differential Equations and Fourier Analysis |c by Steven G. Krantz |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 2004 | |
300 | |a 1 Online-Ressource (XIII, 201 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a The subject of real analysis dates to the mid-nineteenth century - the days of Riemann and Cauchy and Weierstrass. Real analysis grew up as a way to make the calculus rigorous. Today the two subjects are intertwined in most people's minds. Yet calculus is only the first step of a long journey, and real analysis is one of the first great triumphs along that road. In real analysis we learn the rigorous theories of sequences and series, and the profound new insights that these tools make possible. We learn of the completeness of the real number system, and how this property makes the real numbers the natural set of limit points for the rational numbers. We learn of compact sets and uniform convergence. The great classical examples, such as the Weierstrass nowhere-differentiable function and the Cantor set, are part of the bedrock of the subject. Of course complete and rigorous treatments of the derivative and the integral are essential parts of this process. The Weierstrass approximation theorem, the Riemann integral, the Cauchy property for sequences, and many other deep ideas round out the picture of a powerful set of tools | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Fourier analysis | |
650 | 4 | |a Functional analysis | |
650 | 4 | |a Differential Equations | |
650 | 4 | |a Functional Analysis | |
650 | 4 | |a Fourier Analysis | |
650 | 4 | |a Ordinary Differential Equations | |
650 | 4 | |a Real Functions | |
650 | 4 | |a Mathematik | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-0-8176-8128-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854591 |
Datensatz im Suchindex
_version_ | 1804153089486225408 |
---|---|
any_adam_object | |
author | Krantz, Steven G. |
author_facet | Krantz, Steven G. |
author_role | aut |
author_sort | Krantz, Steven G. |
author_variant | s g k sg sgk |
building | Verbundindex |
bvnumber | BV042419175 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)725205846 (DE-599)BVBBV042419175 |
dewey-full | 515.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.7 |
dewey-search | 515.7 |
dewey-sort | 3515.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-0-8176-8128-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02613nmm a2200457zc 4500</leader><controlfield tag="001">BV042419175</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817681289</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-8176-8128-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461264095</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-6409-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-0-8176-8128-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)725205846</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419175</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Krantz, Steven G.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Handbook of Real Variables</subfield><subfield code="b">With Applications to Differential Equations and Fourier Analysis</subfield><subfield code="c">by Steven G. Krantz</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 201 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The subject of real analysis dates to the mid-nineteenth century - the days of Riemann and Cauchy and Weierstrass. Real analysis grew up as a way to make the calculus rigorous. Today the two subjects are intertwined in most people's minds. Yet calculus is only the first step of a long journey, and real analysis is one of the first great triumphs along that road. In real analysis we learn the rigorous theories of sequences and series, and the profound new insights that these tools make possible. We learn of the completeness of the real number system, and how this property makes the real numbers the natural set of limit points for the rational numbers. We learn of compact sets and uniform convergence. The great classical examples, such as the Weierstrass nowhere-differentiable function and the Cantor set, are part of the bedrock of the subject. Of course complete and rigorous treatments of the derivative and the integral are essential parts of this process. The Weierstrass approximation theorem, the Riemann integral, the Cauchy property for sequences, and many other deep ideas round out the picture of a powerful set of tools</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordinary Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Real Functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-0-8176-8128-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854591</subfield></datafield></record></collection> |
id | DE-604.BV042419175 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9780817681289 9781461264095 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854591 |
oclc_num | 725205846 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIII, 201 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Birkhäuser Boston |
record_format | marc |
spelling | Krantz, Steven G. Verfasser aut A Handbook of Real Variables With Applications to Differential Equations and Fourier Analysis by Steven G. Krantz Boston, MA Birkhäuser Boston 2004 1 Online-Ressource (XIII, 201 p) txt rdacontent c rdamedia cr rdacarrier The subject of real analysis dates to the mid-nineteenth century - the days of Riemann and Cauchy and Weierstrass. Real analysis grew up as a way to make the calculus rigorous. Today the two subjects are intertwined in most people's minds. Yet calculus is only the first step of a long journey, and real analysis is one of the first great triumphs along that road. In real analysis we learn the rigorous theories of sequences and series, and the profound new insights that these tools make possible. We learn of the completeness of the real number system, and how this property makes the real numbers the natural set of limit points for the rational numbers. We learn of compact sets and uniform convergence. The great classical examples, such as the Weierstrass nowhere-differentiable function and the Cantor set, are part of the bedrock of the subject. Of course complete and rigorous treatments of the derivative and the integral are essential parts of this process. The Weierstrass approximation theorem, the Riemann integral, the Cauchy property for sequences, and many other deep ideas round out the picture of a powerful set of tools Mathematics Fourier analysis Functional analysis Differential Equations Functional Analysis Fourier Analysis Ordinary Differential Equations Real Functions Mathematik https://doi.org/10.1007/978-0-8176-8128-9 Verlag Volltext |
spellingShingle | Krantz, Steven G. A Handbook of Real Variables With Applications to Differential Equations and Fourier Analysis Mathematics Fourier analysis Functional analysis Differential Equations Functional Analysis Fourier Analysis Ordinary Differential Equations Real Functions Mathematik |
title | A Handbook of Real Variables With Applications to Differential Equations and Fourier Analysis |
title_auth | A Handbook of Real Variables With Applications to Differential Equations and Fourier Analysis |
title_exact_search | A Handbook of Real Variables With Applications to Differential Equations and Fourier Analysis |
title_full | A Handbook of Real Variables With Applications to Differential Equations and Fourier Analysis by Steven G. Krantz |
title_fullStr | A Handbook of Real Variables With Applications to Differential Equations and Fourier Analysis by Steven G. Krantz |
title_full_unstemmed | A Handbook of Real Variables With Applications to Differential Equations and Fourier Analysis by Steven G. Krantz |
title_short | A Handbook of Real Variables |
title_sort | a handbook of real variables with applications to differential equations and fourier analysis |
title_sub | With Applications to Differential Equations and Fourier Analysis |
topic | Mathematics Fourier analysis Functional analysis Differential Equations Functional Analysis Fourier Analysis Ordinary Differential Equations Real Functions Mathematik |
topic_facet | Mathematics Fourier analysis Functional analysis Differential Equations Functional Analysis Fourier Analysis Ordinary Differential Equations Real Functions Mathematik |
url | https://doi.org/10.1007/978-0-8176-8128-9 |
work_keys_str_mv | AT krantzsteveng ahandbookofrealvariableswithapplicationstodifferentialequationsandfourieranalysis |