Algebraic K-Theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
1996
|
Ausgabe: | Second Edition |
Schriftenreihe: | Modern Birkhauser Classics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Algebraic K-Theory has become an increasingly active area of research. With its connections to algebra, algebraic geometry, topology, and number theory, it has implications for a wide variety of researchers and graduate students in mathematics. The book is based on lectures given at the author's home institution, the Tata Institute in Bombay, and elsewhere. A detailed appendix on topology was provided in the first edition to make the treatment accessible to readers with a limited background in topology. The second edition also includes an appendix on algebraic geometry that contains the required definitions and results needed to understand the core of the book; this makes the book accessible to a wider audience. A central part of the book is a detailed exposition of the ideas of Quillen as contained in his classic papers "Higher Algebraic K-Theory, I, II." A more elementary proof of the theorem of Merkujev--Suslin is given in this edition; this makes the treatment of this topic self-contained. An application is also given to modules of finite length and finite projective dimension over the local ring of a normal surface singularity. These results lead the reader to some interesting conclusions regarding the Chow group of varieties. "It is a pleasure to read this mathematically beautiful book..." ---WW.J. Julsbergen, Mathematics Abstracts "The book does an admirable job of presenting the details of Quillen's work..." ---Mathematical Reviews |
Beschreibung: | 1 Online-Ressource (XVII, 341 p) |
ISBN: | 9780817647391 9780817647360 |
ISSN: | 2197-1803 |
DOI: | 10.1007/978-0-8176-4739-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419154 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1996 |||| o||u| ||||||eng d | ||
020 | |a 9780817647391 |c Online |9 978-0-8176-4739-1 | ||
020 | |a 9780817647360 |c Print |9 978-0-8176-4736-0 | ||
024 | 7 | |a 10.1007/978-0-8176-4739-1 |2 doi | |
035 | |a (OCoLC)879625131 | ||
035 | |a (DE-599)BVBBV042419154 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.66 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Srinivas, V. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Algebraic K-Theory |c by V. Srinivas |
250 | |a Second Edition | ||
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 1996 | |
300 | |a 1 Online-Ressource (XVII, 341 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Modern Birkhauser Classics |x 2197-1803 | |
500 | |a Algebraic K-Theory has become an increasingly active area of research. With its connections to algebra, algebraic geometry, topology, and number theory, it has implications for a wide variety of researchers and graduate students in mathematics. The book is based on lectures given at the author's home institution, the Tata Institute in Bombay, and elsewhere. A detailed appendix on topology was provided in the first edition to make the treatment accessible to readers with a limited background in topology. The second edition also includes an appendix on algebraic geometry that contains the required definitions and results needed to understand the core of the book; this makes the book accessible to a wider audience. A central part of the book is a detailed exposition of the ideas of Quillen as contained in his classic papers "Higher Algebraic K-Theory, I, II." A more elementary proof of the theorem of Merkujev--Suslin is given in this edition; this makes the treatment of this topic self-contained. An application is also given to modules of finite length and finite projective dimension over the local ring of a normal surface singularity. These results lead the reader to some interesting conclusions regarding the Chow group of varieties. "It is a pleasure to read this mathematically beautiful book..." ---WW.J. Julsbergen, Mathematics Abstracts "The book does an admirable job of presenting the details of Quillen's work..." ---Mathematical Reviews | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry, algebraic | |
650 | 4 | |a K-theory | |
650 | 4 | |a Topology | |
650 | 4 | |a Algebraic topology | |
650 | 4 | |a K-Theory | |
650 | 4 | |a Algebraic Geometry | |
650 | 4 | |a Algebraic Topology | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Algebra |0 (DE-588)4001156-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a K-Theorie |0 (DE-588)4033335-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische K-Theorie |0 (DE-588)4141839-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Algebraische K-Theorie |0 (DE-588)4141839-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a K-Theorie |0 (DE-588)4033335-8 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Algebra |0 (DE-588)4001156-2 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-0-8176-4739-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854571 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153089440088064 |
---|---|
any_adam_object | |
author | Srinivas, V. |
author_facet | Srinivas, V. |
author_role | aut |
author_sort | Srinivas, V. |
author_variant | v s vs |
building | Verbundindex |
bvnumber | BV042419154 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)879625131 (DE-599)BVBBV042419154 |
dewey-full | 512.66 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.66 |
dewey-search | 512.66 |
dewey-sort | 3512.66 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-0-8176-4739-1 |
edition | Second Edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03580nmm a2200625zc 4500</leader><controlfield tag="001">BV042419154</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817647391</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-8176-4739-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817647360</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-8176-4736-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-0-8176-4739-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879625131</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419154</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.66</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Srinivas, V.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Algebraic K-Theory</subfield><subfield code="c">by V. Srinivas</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVII, 341 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Modern Birkhauser Classics</subfield><subfield code="x">2197-1803</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Algebraic K-Theory has become an increasingly active area of research. With its connections to algebra, algebraic geometry, topology, and number theory, it has implications for a wide variety of researchers and graduate students in mathematics. The book is based on lectures given at the author's home institution, the Tata Institute in Bombay, and elsewhere. A detailed appendix on topology was provided in the first edition to make the treatment accessible to readers with a limited background in topology. The second edition also includes an appendix on algebraic geometry that contains the required definitions and results needed to understand the core of the book; this makes the book accessible to a wider audience. A central part of the book is a detailed exposition of the ideas of Quillen as contained in his classic papers "Higher Algebraic K-Theory, I, II." A more elementary proof of the theorem of Merkujev--Suslin is given in this edition; this makes the treatment of this topic self-contained. An application is also given to modules of finite length and finite projective dimension over the local ring of a normal surface singularity. These results lead the reader to some interesting conclusions regarding the Chow group of varieties. "It is a pleasure to read this mathematically beautiful book..." ---WW.J. Julsbergen, Mathematics Abstracts "The book does an admirable job of presenting the details of Quillen's work..." ---Mathematical Reviews</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">K-theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">K-Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">K-Theorie</subfield><subfield code="0">(DE-588)4033335-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische K-Theorie</subfield><subfield code="0">(DE-588)4141839-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebraische K-Theorie</subfield><subfield code="0">(DE-588)4141839-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">K-Theorie</subfield><subfield code="0">(DE-588)4033335-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-0-8176-4739-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854571</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419154 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9780817647391 9780817647360 |
issn | 2197-1803 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854571 |
oclc_num | 879625131 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVII, 341 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Birkhäuser Boston |
record_format | marc |
series2 | Modern Birkhauser Classics |
spelling | Srinivas, V. Verfasser aut Algebraic K-Theory by V. Srinivas Second Edition Boston, MA Birkhäuser Boston 1996 1 Online-Ressource (XVII, 341 p) txt rdacontent c rdamedia cr rdacarrier Modern Birkhauser Classics 2197-1803 Algebraic K-Theory has become an increasingly active area of research. With its connections to algebra, algebraic geometry, topology, and number theory, it has implications for a wide variety of researchers and graduate students in mathematics. The book is based on lectures given at the author's home institution, the Tata Institute in Bombay, and elsewhere. A detailed appendix on topology was provided in the first edition to make the treatment accessible to readers with a limited background in topology. The second edition also includes an appendix on algebraic geometry that contains the required definitions and results needed to understand the core of the book; this makes the book accessible to a wider audience. A central part of the book is a detailed exposition of the ideas of Quillen as contained in his classic papers "Higher Algebraic K-Theory, I, II." A more elementary proof of the theorem of Merkujev--Suslin is given in this edition; this makes the treatment of this topic self-contained. An application is also given to modules of finite length and finite projective dimension over the local ring of a normal surface singularity. These results lead the reader to some interesting conclusions regarding the Chow group of varieties. "It is a pleasure to read this mathematically beautiful book..." ---WW.J. Julsbergen, Mathematics Abstracts "The book does an admirable job of presenting the details of Quillen's work..." ---Mathematical Reviews Mathematics Geometry, algebraic K-theory Topology Algebraic topology K-Theory Algebraic Geometry Algebraic Topology Mathematik Algebra (DE-588)4001156-2 gnd rswk-swf K-Theorie (DE-588)4033335-8 gnd rswk-swf Algebraische K-Theorie (DE-588)4141839-6 gnd rswk-swf Algebraische K-Theorie (DE-588)4141839-6 s 1\p DE-604 K-Theorie (DE-588)4033335-8 s 2\p DE-604 Algebra (DE-588)4001156-2 s 3\p DE-604 https://doi.org/10.1007/978-0-8176-4739-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Srinivas, V. Algebraic K-Theory Mathematics Geometry, algebraic K-theory Topology Algebraic topology K-Theory Algebraic Geometry Algebraic Topology Mathematik Algebra (DE-588)4001156-2 gnd K-Theorie (DE-588)4033335-8 gnd Algebraische K-Theorie (DE-588)4141839-6 gnd |
subject_GND | (DE-588)4001156-2 (DE-588)4033335-8 (DE-588)4141839-6 |
title | Algebraic K-Theory |
title_auth | Algebraic K-Theory |
title_exact_search | Algebraic K-Theory |
title_full | Algebraic K-Theory by V. Srinivas |
title_fullStr | Algebraic K-Theory by V. Srinivas |
title_full_unstemmed | Algebraic K-Theory by V. Srinivas |
title_short | Algebraic K-Theory |
title_sort | algebraic k theory |
topic | Mathematics Geometry, algebraic K-theory Topology Algebraic topology K-Theory Algebraic Geometry Algebraic Topology Mathematik Algebra (DE-588)4001156-2 gnd K-Theorie (DE-588)4033335-8 gnd Algebraische K-Theorie (DE-588)4141839-6 gnd |
topic_facet | Mathematics Geometry, algebraic K-theory Topology Algebraic topology K-Theory Algebraic Geometry Algebraic Topology Mathematik Algebra K-Theorie Algebraische K-Theorie |
url | https://doi.org/10.1007/978-0-8176-4739-1 |
work_keys_str_mv | AT srinivasv algebraicktheory |