Weyl Transforms:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1998
|
Schriftenreihe: | Universitext
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book is an outgrowth of courses given by me for graduate students at York University in the past ten years. The actual writing of the book in this form was carried out at York University, Peking University, the Academia Sinica in Beijing, the University of California at Irvine, Osaka University, and the University of Delaware. The idea of writing this book was ?rst conceived in the summer of 1989, and the protracted period of gestation was due to my daily duties as a professor at York University. I would like to thank Professor K. C. Chang, of Peking University; Professor Shujie Li, of the Academia Sinica in Beijing; Professor Martin Schechter, of the University of California at Irvine; Professor Michihiro Nagase, of Osaka University; and Professor M. Z. Nashed, of the University of Delaware, for providing me with stimulating environments for the exchange of ideas and the actual writing of the book. We study in this book the properties of pseudo-differential operators arising in quantum mechanics, ?rst envisaged in [33] by Hermann Weyl, as bounded linear 2 n operators on L (R ). Thus, it is natural to call the operators treated in this book Weyl transforms |
Beschreibung: | 1 Online-Ressource (VIII, 160 p) |
ISBN: | 9780387227788 9780387984148 |
DOI: | 10.1007/b98973 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419125 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1998 |||| o||u| ||||||eng d | ||
020 | |a 9780387227788 |c Online |9 978-0-387-22778-8 | ||
020 | |a 9780387984148 |c Print |9 978-0-387-98414-8 | ||
024 | 7 | |a 10.1007/b98973 |2 doi | |
035 | |a (OCoLC)704468700 | ||
035 | |a (DE-599)BVBBV042419125 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.482 |2 23 | |
082 | 0 | |a 512.55 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Wong, M. W. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Weyl Transforms |c by M. W. Wong |
264 | 1 | |a New York, NY |b Springer New York |c 1998 | |
300 | |a 1 Online-Ressource (VIII, 160 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Universitext | |
500 | |a This book is an outgrowth of courses given by me for graduate students at York University in the past ten years. The actual writing of the book in this form was carried out at York University, Peking University, the Academia Sinica in Beijing, the University of California at Irvine, Osaka University, and the University of Delaware. The idea of writing this book was ?rst conceived in the summer of 1989, and the protracted period of gestation was due to my daily duties as a professor at York University. I would like to thank Professor K. C. Chang, of Peking University; Professor Shujie Li, of the Academia Sinica in Beijing; Professor Martin Schechter, of the University of California at Irvine; Professor Michihiro Nagase, of Osaka University; and Professor M. Z. Nashed, of the University of Delaware, for providing me with stimulating environments for the exchange of ideas and the actual writing of the book. We study in this book the properties of pseudo-differential operators arising in quantum mechanics, ?rst envisaged in [33] by Hermann Weyl, as bounded linear 2 n operators on L (R ). Thus, it is natural to call the operators treated in this book Weyl transforms | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Topological Groups | |
650 | 4 | |a Topological Groups, Lie Groups | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Pseudodifferentialoperator |0 (DE-588)4047640-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Weyl-Transformierte |0 (DE-588)4520977-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fourier-Transformation |0 (DE-588)4018014-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Fourier-Transformation |0 (DE-588)4018014-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Weyl-Transformierte |0 (DE-588)4520977-7 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Pseudodifferentialoperator |0 (DE-588)4047640-6 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/b98973 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854542 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153089393950720 |
---|---|
any_adam_object | |
author | Wong, M. W. |
author_facet | Wong, M. W. |
author_role | aut |
author_sort | Wong, M. W. |
author_variant | m w w mw mww |
building | Verbundindex |
bvnumber | BV042419125 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)704468700 (DE-599)BVBBV042419125 |
dewey-full | 512.482 512.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.482 512.55 |
dewey-search | 512.482 512.55 |
dewey-sort | 3512.482 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/b98973 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03166nmm a2200565zc 4500</leader><controlfield tag="001">BV042419125</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1998 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387227788</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-387-22778-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387984148</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-98414-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/b98973</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)704468700</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419125</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.482</subfield><subfield code="2">23</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.55</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wong, M. W.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Weyl Transforms</subfield><subfield code="c">by M. W. Wong</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 160 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book is an outgrowth of courses given by me for graduate students at York University in the past ten years. The actual writing of the book in this form was carried out at York University, Peking University, the Academia Sinica in Beijing, the University of California at Irvine, Osaka University, and the University of Delaware. The idea of writing this book was ?rst conceived in the summer of 1989, and the protracted period of gestation was due to my daily duties as a professor at York University. I would like to thank Professor K. C. Chang, of Peking University; Professor Shujie Li, of the Academia Sinica in Beijing; Professor Martin Schechter, of the University of California at Irvine; Professor Michihiro Nagase, of Osaka University; and Professor M. Z. Nashed, of the University of Delaware, for providing me with stimulating environments for the exchange of ideas and the actual writing of the book. We study in this book the properties of pseudo-differential operators arising in quantum mechanics, ?rst envisaged in [33] by Hermann Weyl, as bounded linear 2 n operators on L (R ). Thus, it is natural to call the operators treated in this book Weyl transforms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups, Lie Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pseudodifferentialoperator</subfield><subfield code="0">(DE-588)4047640-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Weyl-Transformierte</subfield><subfield code="0">(DE-588)4520977-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fourier-Transformation</subfield><subfield code="0">(DE-588)4018014-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fourier-Transformation</subfield><subfield code="0">(DE-588)4018014-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Weyl-Transformierte</subfield><subfield code="0">(DE-588)4520977-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Pseudodifferentialoperator</subfield><subfield code="0">(DE-588)4047640-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/b98973</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854542</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419125 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9780387227788 9780387984148 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854542 |
oclc_num | 704468700 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 160 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Springer New York |
record_format | marc |
series2 | Universitext |
spelling | Wong, M. W. Verfasser aut Weyl Transforms by M. W. Wong New York, NY Springer New York 1998 1 Online-Ressource (VIII, 160 p) txt rdacontent c rdamedia cr rdacarrier Universitext This book is an outgrowth of courses given by me for graduate students at York University in the past ten years. The actual writing of the book in this form was carried out at York University, Peking University, the Academia Sinica in Beijing, the University of California at Irvine, Osaka University, and the University of Delaware. The idea of writing this book was ?rst conceived in the summer of 1989, and the protracted period of gestation was due to my daily duties as a professor at York University. I would like to thank Professor K. C. Chang, of Peking University; Professor Shujie Li, of the Academia Sinica in Beijing; Professor Martin Schechter, of the University of California at Irvine; Professor Michihiro Nagase, of Osaka University; and Professor M. Z. Nashed, of the University of Delaware, for providing me with stimulating environments for the exchange of ideas and the actual writing of the book. We study in this book the properties of pseudo-differential operators arising in quantum mechanics, ?rst envisaged in [33] by Hermann Weyl, as bounded linear 2 n operators on L (R ). Thus, it is natural to call the operators treated in this book Weyl transforms Mathematics Topological Groups Topological Groups, Lie Groups Mathematik Pseudodifferentialoperator (DE-588)4047640-6 gnd rswk-swf Weyl-Transformierte (DE-588)4520977-7 gnd rswk-swf Fourier-Transformation (DE-588)4018014-1 gnd rswk-swf Fourier-Transformation (DE-588)4018014-1 s 1\p DE-604 Weyl-Transformierte (DE-588)4520977-7 s 2\p DE-604 Pseudodifferentialoperator (DE-588)4047640-6 s 3\p DE-604 https://doi.org/10.1007/b98973 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Wong, M. W. Weyl Transforms Mathematics Topological Groups Topological Groups, Lie Groups Mathematik Pseudodifferentialoperator (DE-588)4047640-6 gnd Weyl-Transformierte (DE-588)4520977-7 gnd Fourier-Transformation (DE-588)4018014-1 gnd |
subject_GND | (DE-588)4047640-6 (DE-588)4520977-7 (DE-588)4018014-1 |
title | Weyl Transforms |
title_auth | Weyl Transforms |
title_exact_search | Weyl Transforms |
title_full | Weyl Transforms by M. W. Wong |
title_fullStr | Weyl Transforms by M. W. Wong |
title_full_unstemmed | Weyl Transforms by M. W. Wong |
title_short | Weyl Transforms |
title_sort | weyl transforms |
topic | Mathematics Topological Groups Topological Groups, Lie Groups Mathematik Pseudodifferentialoperator (DE-588)4047640-6 gnd Weyl-Transformierte (DE-588)4520977-7 gnd Fourier-Transformation (DE-588)4018014-1 gnd |
topic_facet | Mathematics Topological Groups Topological Groups, Lie Groups Mathematik Pseudodifferentialoperator Weyl-Transformierte Fourier-Transformation |
url | https://doi.org/10.1007/b98973 |
work_keys_str_mv | AT wongmw weyltransforms |