Applied Multivariate Analysis:
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
2002
|
Schriftenreihe: | Springer Texts in Statistics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Univariate statistical analysis is concerned with techniques for the analysis of a single random variable. This book is about applied multivariate analysis. It was written to provide students and researchers with an introduction to statistical techniques for the analysis of continuous quantitative measurements on several random variables simultaneously. While quantitative measurements may be obtained from any population, the material in this text is primarily concerned with techniques useful for the analysis of continuous observations from multivariate normal populations with linear structure. While several multivariate methods are extensions of univariate procedures, a unique feature of multivariate data analysis techniques is their ability to control experimental error at an exact nominal level and to provide information on the covariance structure of the data. These features tend to enhance statistical inference, making multivariate data analysis superior to univariate analysis. While in a previous edition of my textbook on multivariate analysis, I tried to precede a multivariate method with a corresponding univariate procedure when applicable, I have not taken this approach here. Instead, it is assumed that the reader has taken basic courses in multiple linear regression, analysis of variance, and experimental design. While students may be familiar with vector spaces and matrices, important results essential to multivariate analysis are reviewed in Chapter 2. I have avoided the use of calculus in this text |
Beschreibung: | 1 Online-Ressource (XXIV, 695 p) |
ISBN: | 9780387227719 9780387953472 |
ISSN: | 1431-875X |
DOI: | 10.1007/b98963 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419118 | ||
003 | DE-604 | ||
005 | 20171019 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2002 |||| o||u| ||||||eng d | ||
020 | |a 9780387227719 |c Online |9 978-0-387-22771-9 | ||
020 | |a 9780387953472 |c Print |9 978-0-387-95347-2 | ||
024 | 7 | |a 10.1007/b98963 |2 doi | |
035 | |a (OCoLC)704496103 | ||
035 | |a (DE-599)BVBBV042419118 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.5 |2 23 | |
084 | |a MAT 000 |2 stub | ||
245 | 1 | 0 | |a Applied Multivariate Analysis |c edited by Neil H. Timm |
264 | 1 | |a New York, NY |b Springer New York |c 2002 | |
300 | |a 1 Online-Ressource (XXIV, 695 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Texts in Statistics |x 1431-875X | |
500 | |a Univariate statistical analysis is concerned with techniques for the analysis of a single random variable. This book is about applied multivariate analysis. It was written to provide students and researchers with an introduction to statistical techniques for the analysis of continuous quantitative measurements on several random variables simultaneously. While quantitative measurements may be obtained from any population, the material in this text is primarily concerned with techniques useful for the analysis of continuous observations from multivariate normal populations with linear structure. While several multivariate methods are extensions of univariate procedures, a unique feature of multivariate data analysis techniques is their ability to control experimental error at an exact nominal level and to provide information on the covariance structure of the data. These features tend to enhance statistical inference, making multivariate data analysis superior to univariate analysis. While in a previous edition of my textbook on multivariate analysis, I tried to precede a multivariate method with a corresponding univariate procedure when applicable, I have not taken this approach here. Instead, it is assumed that the reader has taken basic courses in multiple linear regression, analysis of variance, and experimental design. While students may be familiar with vector spaces and matrices, important results essential to multivariate analysis are reviewed in Chapter 2. I have avoided the use of calculus in this text | ||
650 | 4 | |a Statistics | |
650 | 4 | |a Mathematical statistics | |
650 | 4 | |a Economics / Statistics | |
650 | 4 | |a Statistical Theory and Methods | |
650 | 4 | |a Statistics for Social Science, Behavorial Science, Education, Public Policy, and Law | |
650 | 4 | |a Statistics for Business/Economics/Mathematical Finance/Insurance | |
650 | 4 | |a Statistik | |
650 | 4 | |a Wirtschaft | |
650 | 0 | 7 | |a Multivariate Analyse |0 (DE-588)4040708-1 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Multivariate Analyse |0 (DE-588)4040708-1 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
700 | 1 | |a Timm, Neil H. |0 (DE-588)124033717 |4 edt | |
856 | 4 | 0 | |u https://doi.org/10.1007/b98963 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854535 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153089383464960 |
---|---|
any_adam_object | |
author2 | Timm, Neil H. |
author2_role | edt |
author2_variant | n h t nh nht |
author_GND | (DE-588)124033717 |
author_facet | Timm, Neil H. |
building | Verbundindex |
bvnumber | BV042419118 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)704496103 (DE-599)BVBBV042419118 |
dewey-full | 519.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5 |
dewey-search | 519.5 |
dewey-sort | 3519.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/b98963 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03453nmm a2200529zc 4500</leader><controlfield tag="001">BV042419118</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171019 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387227719</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-387-22771-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387953472</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-95347-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/b98963</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)704496103</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419118</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Applied Multivariate Analysis</subfield><subfield code="c">edited by Neil H. Timm</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXIV, 695 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Texts in Statistics</subfield><subfield code="x">1431-875X</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Univariate statistical analysis is concerned with techniques for the analysis of a single random variable. This book is about applied multivariate analysis. It was written to provide students and researchers with an introduction to statistical techniques for the analysis of continuous quantitative measurements on several random variables simultaneously. While quantitative measurements may be obtained from any population, the material in this text is primarily concerned with techniques useful for the analysis of continuous observations from multivariate normal populations with linear structure. While several multivariate methods are extensions of univariate procedures, a unique feature of multivariate data analysis techniques is their ability to control experimental error at an exact nominal level and to provide information on the covariance structure of the data. These features tend to enhance statistical inference, making multivariate data analysis superior to univariate analysis. While in a previous edition of my textbook on multivariate analysis, I tried to precede a multivariate method with a corresponding univariate procedure when applicable, I have not taken this approach here. Instead, it is assumed that the reader has taken basic courses in multiple linear regression, analysis of variance, and experimental design. While students may be familiar with vector spaces and matrices, important results essential to multivariate analysis are reviewed in Chapter 2. I have avoided the use of calculus in this text</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economics / Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Theory and Methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics for Social Science, Behavorial Science, Education, Public Policy, and Law</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics for Business/Economics/Mathematical Finance/Insurance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wirtschaft</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Multivariate Analyse</subfield><subfield code="0">(DE-588)4040708-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Multivariate Analyse</subfield><subfield code="0">(DE-588)4040708-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Timm, Neil H.</subfield><subfield code="0">(DE-588)124033717</subfield><subfield code="4">edt</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/b98963</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854535</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV042419118 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9780387227719 9780387953472 |
issn | 1431-875X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854535 |
oclc_num | 704496103 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XXIV, 695 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Springer New York |
record_format | marc |
series2 | Springer Texts in Statistics |
spelling | Applied Multivariate Analysis edited by Neil H. Timm New York, NY Springer New York 2002 1 Online-Ressource (XXIV, 695 p) txt rdacontent c rdamedia cr rdacarrier Springer Texts in Statistics 1431-875X Univariate statistical analysis is concerned with techniques for the analysis of a single random variable. This book is about applied multivariate analysis. It was written to provide students and researchers with an introduction to statistical techniques for the analysis of continuous quantitative measurements on several random variables simultaneously. While quantitative measurements may be obtained from any population, the material in this text is primarily concerned with techniques useful for the analysis of continuous observations from multivariate normal populations with linear structure. While several multivariate methods are extensions of univariate procedures, a unique feature of multivariate data analysis techniques is their ability to control experimental error at an exact nominal level and to provide information on the covariance structure of the data. These features tend to enhance statistical inference, making multivariate data analysis superior to univariate analysis. While in a previous edition of my textbook on multivariate analysis, I tried to precede a multivariate method with a corresponding univariate procedure when applicable, I have not taken this approach here. Instead, it is assumed that the reader has taken basic courses in multiple linear regression, analysis of variance, and experimental design. While students may be familiar with vector spaces and matrices, important results essential to multivariate analysis are reviewed in Chapter 2. I have avoided the use of calculus in this text Statistics Mathematical statistics Economics / Statistics Statistical Theory and Methods Statistics for Social Science, Behavorial Science, Education, Public Policy, and Law Statistics for Business/Economics/Mathematical Finance/Insurance Statistik Wirtschaft Multivariate Analyse (DE-588)4040708-1 gnd rswk-swf 1\p (DE-588)4151278-9 Einführung gnd-content Multivariate Analyse (DE-588)4040708-1 s 2\p DE-604 Timm, Neil H. (DE-588)124033717 edt https://doi.org/10.1007/b98963 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Applied Multivariate Analysis Statistics Mathematical statistics Economics / Statistics Statistical Theory and Methods Statistics for Social Science, Behavorial Science, Education, Public Policy, and Law Statistics for Business/Economics/Mathematical Finance/Insurance Statistik Wirtschaft Multivariate Analyse (DE-588)4040708-1 gnd |
subject_GND | (DE-588)4040708-1 (DE-588)4151278-9 |
title | Applied Multivariate Analysis |
title_auth | Applied Multivariate Analysis |
title_exact_search | Applied Multivariate Analysis |
title_full | Applied Multivariate Analysis edited by Neil H. Timm |
title_fullStr | Applied Multivariate Analysis edited by Neil H. Timm |
title_full_unstemmed | Applied Multivariate Analysis edited by Neil H. Timm |
title_short | Applied Multivariate Analysis |
title_sort | applied multivariate analysis |
topic | Statistics Mathematical statistics Economics / Statistics Statistical Theory and Methods Statistics for Social Science, Behavorial Science, Education, Public Policy, and Law Statistics for Business/Economics/Mathematical Finance/Insurance Statistik Wirtschaft Multivariate Analyse (DE-588)4040708-1 gnd |
topic_facet | Statistics Mathematical statistics Economics / Statistics Statistical Theory and Methods Statistics for Social Science, Behavorial Science, Education, Public Policy, and Law Statistics for Business/Economics/Mathematical Finance/Insurance Statistik Wirtschaft Multivariate Analyse Einführung |
url | https://doi.org/10.1007/b98963 |
work_keys_str_mv | AT timmneilh appliedmultivariateanalysis |