A Course on Borel Sets:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1998
|
Schriftenreihe: | Graduate Texts in Mathematics
180 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | A Course on Borel sets provides a thorough introduction to Borel sets and measurable selections and acts as a stepping stone to descriptive set theory by presenting important techniques such as universal sets, prewellordering, scales, etc. It is well suited for graduate students exploring areas of mathematics for their research and for mathematicians requiring Borel sets and measurable selections in their work. It contains significant applications to other branches of mathematics and can serve as a self- contained reference accessible by mathematicians in many different disciplines. It is written in an easily understandable style and employs only naive set theory, general topology, analysis, and algebra. A large number of interesting exercises are given throughout the text |
Beschreibung: | 1 Online-Ressource (XVI, 264 p) |
ISBN: | 9780387227672 9780387984124 |
ISSN: | 0072-5285 |
DOI: | 10.1007/b98956 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042419115 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1998 |||| o||u| ||||||eng d | ||
020 | |a 9780387227672 |c Online |9 978-0-387-22767-2 | ||
020 | |a 9780387984124 |c Print |9 978-0-387-98412-4 | ||
024 | 7 | |a 10.1007/b98956 |2 doi | |
035 | |a (OCoLC)704468584 | ||
035 | |a (DE-599)BVBBV042419115 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 511.3 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Srivastava, S. M. |e Verfasser |4 aut | |
245 | 1 | 0 | |a A Course on Borel Sets |c by S. M. Srivastava |
264 | 1 | |a New York, NY |b Springer New York |c 1998 | |
300 | |a 1 Online-Ressource (XVI, 264 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Graduate Texts in Mathematics |v 180 |x 0072-5285 | |
500 | |a A Course on Borel sets provides a thorough introduction to Borel sets and measurable selections and acts as a stepping stone to descriptive set theory by presenting important techniques such as universal sets, prewellordering, scales, etc. It is well suited for graduate students exploring areas of mathematics for their research and for mathematicians requiring Borel sets and measurable selections in their work. It contains significant applications to other branches of mathematics and can serve as a self- contained reference accessible by mathematicians in many different disciplines. It is written in an easily understandable style and employs only naive set theory, general topology, analysis, and algebra. A large number of interesting exercises are given throughout the text | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Logic, Symbolic and mathematical | |
650 | 4 | |a Topology | |
650 | 4 | |a Mathematical Logic and Foundations | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Borel-Menge |0 (DE-588)4146323-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Borel-Menge |0 (DE-588)4146323-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/b98956 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854532 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153089371930624 |
---|---|
any_adam_object | |
author | Srivastava, S. M. |
author_facet | Srivastava, S. M. |
author_role | aut |
author_sort | Srivastava, S. M. |
author_variant | s m s sm sms |
building | Verbundindex |
bvnumber | BV042419115 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)704468584 (DE-599)BVBBV042419115 |
dewey-full | 511.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3 |
dewey-search | 511.3 |
dewey-sort | 3511.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/b98956 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02319nmm a2200469zcb4500</leader><controlfield tag="001">BV042419115</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1998 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387227672</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-387-22767-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387984124</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-98412-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/b98956</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)704468584</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419115</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Srivastava, S. M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Course on Borel Sets</subfield><subfield code="c">by S. M. Srivastava</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVI, 264 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Graduate Texts in Mathematics</subfield><subfield code="v">180</subfield><subfield code="x">0072-5285</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">A Course on Borel sets provides a thorough introduction to Borel sets and measurable selections and acts as a stepping stone to descriptive set theory by presenting important techniques such as universal sets, prewellordering, scales, etc. It is well suited for graduate students exploring areas of mathematics for their research and for mathematicians requiring Borel sets and measurable selections in their work. It contains significant applications to other branches of mathematics and can serve as a self- contained reference accessible by mathematicians in many different disciplines. It is written in an easily understandable style and employs only naive set theory, general topology, analysis, and algebra. A large number of interesting exercises are given throughout the text</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic, Symbolic and mathematical</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Logic and Foundations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Borel-Menge</subfield><subfield code="0">(DE-588)4146323-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Borel-Menge</subfield><subfield code="0">(DE-588)4146323-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/b98956</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854532</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419115 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9780387227672 9780387984124 |
issn | 0072-5285 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854532 |
oclc_num | 704468584 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVI, 264 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Springer New York |
record_format | marc |
series2 | Graduate Texts in Mathematics |
spelling | Srivastava, S. M. Verfasser aut A Course on Borel Sets by S. M. Srivastava New York, NY Springer New York 1998 1 Online-Ressource (XVI, 264 p) txt rdacontent c rdamedia cr rdacarrier Graduate Texts in Mathematics 180 0072-5285 A Course on Borel sets provides a thorough introduction to Borel sets and measurable selections and acts as a stepping stone to descriptive set theory by presenting important techniques such as universal sets, prewellordering, scales, etc. It is well suited for graduate students exploring areas of mathematics for their research and for mathematicians requiring Borel sets and measurable selections in their work. It contains significant applications to other branches of mathematics and can serve as a self- contained reference accessible by mathematicians in many different disciplines. It is written in an easily understandable style and employs only naive set theory, general topology, analysis, and algebra. A large number of interesting exercises are given throughout the text Mathematics Logic, Symbolic and mathematical Topology Mathematical Logic and Foundations Mathematik Borel-Menge (DE-588)4146323-7 gnd rswk-swf Borel-Menge (DE-588)4146323-7 s 1\p DE-604 https://doi.org/10.1007/b98956 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Srivastava, S. M. A Course on Borel Sets Mathematics Logic, Symbolic and mathematical Topology Mathematical Logic and Foundations Mathematik Borel-Menge (DE-588)4146323-7 gnd |
subject_GND | (DE-588)4146323-7 |
title | A Course on Borel Sets |
title_auth | A Course on Borel Sets |
title_exact_search | A Course on Borel Sets |
title_full | A Course on Borel Sets by S. M. Srivastava |
title_fullStr | A Course on Borel Sets by S. M. Srivastava |
title_full_unstemmed | A Course on Borel Sets by S. M. Srivastava |
title_short | A Course on Borel Sets |
title_sort | a course on borel sets |
topic | Mathematics Logic, Symbolic and mathematical Topology Mathematical Logic and Foundations Mathematik Borel-Menge (DE-588)4146323-7 gnd |
topic_facet | Mathematics Logic, Symbolic and mathematical Topology Mathematical Logic and Foundations Mathematik Borel-Menge |
url | https://doi.org/10.1007/b98956 |
work_keys_str_mv | AT srivastavasm acourseonborelsets |