Mathematical statistics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1999
|
Schriftenreihe: | Springer Texts in Statistics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book is intended for a course entitled Mathematical Statistics o?ered at the Department of Statistics, University of Wisconsin-Madison. This course, taught in a mathematically rigorous fashion, covers essential - terials in statistical theory that a ?rst or second year graduate student typically needs to learn as preparation for work on a Ph. D. degree in stat- tics. The course is designed for two 15-week semesters, with three lecture hours and two discussion hours in each week. Students in this course are assumed to have a good knowledge of advanced calculus. A course in real analysis or measure theory prior to this course is often recommended. Chapter 1 provides a quick overview of important concepts and results in measure-theoretic probability theory that are used as tools in the rest of the book. Chapter 2 introduces some fundamental concepts in statistics, including statistical models, the principle of su?ciency in data reduction, and two statistical approaches adopted throughout the book: statistical decision theory and statistical inference. Each of Chapters 3 through 7 provides a detailed study of an important topic in statistical decision t- ory and inference; Chapter 3 introduces the theory of unbiased estimation; Chapter 4 studies theory and methods in point estimation under param- ric models; Chapter 5 covers point estimation in nonparametric settings; Chapter 6 focuses on hypothesis testing; and Chapter 7 discusses int- val estimation and con?dence sets |
Beschreibung: | 1 Online-Ressource (XIV, 530 p) |
ISBN: | 9780387227597 |
ISSN: | 1431-875X |
DOI: | 10.1007/b98900 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419109 | ||
003 | DE-604 | ||
005 | 20190814 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1999 |||| o||u| ||||||eng d | ||
020 | |a 9780387227597 |c Online |9 978-0-387-22759-7 | ||
024 | 7 | |a 10.1007/b98900 |2 doi | |
035 | |a (OCoLC)704468676 | ||
035 | |a (DE-599)BVBBV042419109 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.5 |2 23 | |
084 | |a QH 230 |0 (DE-625)141545: |2 rvk | ||
084 | |a SK 800 |0 (DE-625)143256: |2 rvk | ||
084 | |a SK 830 |0 (DE-625)143259: |2 rvk | ||
084 | |a SK 840 |0 (DE-625)143261: |2 rvk | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Shao, Jun |e Verfasser |0 (DE-588)170899543 |4 aut | |
245 | 1 | 0 | |a Mathematical statistics |c by Jun Shao |
264 | 1 | |a New York, NY |b Springer New York |c 1999 | |
300 | |a 1 Online-Ressource (XIV, 530 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Texts in Statistics |x 1431-875X | |
500 | |a This book is intended for a course entitled Mathematical Statistics o?ered at the Department of Statistics, University of Wisconsin-Madison. This course, taught in a mathematically rigorous fashion, covers essential - terials in statistical theory that a ?rst or second year graduate student typically needs to learn as preparation for work on a Ph. D. degree in stat- tics. The course is designed for two 15-week semesters, with three lecture hours and two discussion hours in each week. Students in this course are assumed to have a good knowledge of advanced calculus. A course in real analysis or measure theory prior to this course is often recommended. Chapter 1 provides a quick overview of important concepts and results in measure-theoretic probability theory that are used as tools in the rest of the book. Chapter 2 introduces some fundamental concepts in statistics, including statistical models, the principle of su?ciency in data reduction, and two statistical approaches adopted throughout the book: statistical decision theory and statistical inference. Each of Chapters 3 through 7 provides a detailed study of an important topic in statistical decision t- ory and inference; Chapter 3 introduces the theory of unbiased estimation; Chapter 4 studies theory and methods in point estimation under param- ric models; Chapter 5 covers point estimation in nonparametric settings; Chapter 6 focuses on hypothesis testing; and Chapter 7 discusses int- val estimation and con?dence sets | ||
650 | 4 | |a Statistics | |
650 | 4 | |a Mathematical statistics | |
650 | 4 | |a Statistical Theory and Methods | |
650 | 4 | |a Statistik | |
650 | 0 | 7 | |a Statistik |0 (DE-588)4056995-0 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4143389-0 |a Aufgabensammlung |2 gnd-content | |
689 | 0 | 0 | |a Statistik |0 (DE-588)4056995-0 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-387-98674-6 |
856 | 4 | 0 | |u https://doi.org/10.1007/b98900 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854526 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153089344667648 |
---|---|
any_adam_object | |
author | Shao, Jun |
author_GND | (DE-588)170899543 |
author_facet | Shao, Jun |
author_role | aut |
author_sort | Shao, Jun |
author_variant | j s js |
building | Verbundindex |
bvnumber | BV042419109 |
classification_rvk | QH 230 SK 800 SK 830 SK 840 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)704468676 (DE-599)BVBBV042419109 |
dewey-full | 519.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5 |
dewey-search | 519.5 |
dewey-sort | 3519.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik Wirtschaftswissenschaften |
doi_str_mv | 10.1007/b98900 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03239nmm a2200517zc 4500</leader><controlfield tag="001">BV042419109</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190814 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387227597</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-387-22759-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/b98900</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)704468676</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419109</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 230</subfield><subfield code="0">(DE-625)141545:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 800</subfield><subfield code="0">(DE-625)143256:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 830</subfield><subfield code="0">(DE-625)143259:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 840</subfield><subfield code="0">(DE-625)143261:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shao, Jun</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)170899543</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical statistics</subfield><subfield code="c">by Jun Shao</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 530 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Texts in Statistics</subfield><subfield code="x">1431-875X</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book is intended for a course entitled Mathematical Statistics o?ered at the Department of Statistics, University of Wisconsin-Madison. This course, taught in a mathematically rigorous fashion, covers essential - terials in statistical theory that a ?rst or second year graduate student typically needs to learn as preparation for work on a Ph. D. degree in stat- tics. The course is designed for two 15-week semesters, with three lecture hours and two discussion hours in each week. Students in this course are assumed to have a good knowledge of advanced calculus. A course in real analysis or measure theory prior to this course is often recommended. Chapter 1 provides a quick overview of important concepts and results in measure-theoretic probability theory that are used as tools in the rest of the book. Chapter 2 introduces some fundamental concepts in statistics, including statistical models, the principle of su?ciency in data reduction, and two statistical approaches adopted throughout the book: statistical decision theory and statistical inference. Each of Chapters 3 through 7 provides a detailed study of an important topic in statistical decision t- ory and inference; Chapter 3 introduces the theory of unbiased estimation; Chapter 4 studies theory and methods in point estimation under param- ric models; Chapter 5 covers point estimation in nonparametric settings; Chapter 6 focuses on hypothesis testing; and Chapter 7 discusses int- val estimation and con?dence sets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Theory and Methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4143389-0</subfield><subfield code="a">Aufgabensammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-387-98674-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/b98900</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854526</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4143389-0 Aufgabensammlung gnd-content |
genre_facet | Aufgabensammlung |
id | DE-604.BV042419109 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9780387227597 |
issn | 1431-875X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854526 |
oclc_num | 704468676 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIV, 530 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Springer New York |
record_format | marc |
series2 | Springer Texts in Statistics |
spelling | Shao, Jun Verfasser (DE-588)170899543 aut Mathematical statistics by Jun Shao New York, NY Springer New York 1999 1 Online-Ressource (XIV, 530 p) txt rdacontent c rdamedia cr rdacarrier Springer Texts in Statistics 1431-875X This book is intended for a course entitled Mathematical Statistics o?ered at the Department of Statistics, University of Wisconsin-Madison. This course, taught in a mathematically rigorous fashion, covers essential - terials in statistical theory that a ?rst or second year graduate student typically needs to learn as preparation for work on a Ph. D. degree in stat- tics. The course is designed for two 15-week semesters, with three lecture hours and two discussion hours in each week. Students in this course are assumed to have a good knowledge of advanced calculus. A course in real analysis or measure theory prior to this course is often recommended. Chapter 1 provides a quick overview of important concepts and results in measure-theoretic probability theory that are used as tools in the rest of the book. Chapter 2 introduces some fundamental concepts in statistics, including statistical models, the principle of su?ciency in data reduction, and two statistical approaches adopted throughout the book: statistical decision theory and statistical inference. Each of Chapters 3 through 7 provides a detailed study of an important topic in statistical decision t- ory and inference; Chapter 3 introduces the theory of unbiased estimation; Chapter 4 studies theory and methods in point estimation under param- ric models; Chapter 5 covers point estimation in nonparametric settings; Chapter 6 focuses on hypothesis testing; and Chapter 7 discusses int- val estimation and con?dence sets Statistics Mathematical statistics Statistical Theory and Methods Statistik Statistik (DE-588)4056995-0 gnd rswk-swf 1\p (DE-588)4143389-0 Aufgabensammlung gnd-content Statistik (DE-588)4056995-0 s DE-604 Erscheint auch als Druck-Ausgabe 978-0-387-98674-6 https://doi.org/10.1007/b98900 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Shao, Jun Mathematical statistics Statistics Mathematical statistics Statistical Theory and Methods Statistik Statistik (DE-588)4056995-0 gnd |
subject_GND | (DE-588)4056995-0 (DE-588)4143389-0 |
title | Mathematical statistics |
title_auth | Mathematical statistics |
title_exact_search | Mathematical statistics |
title_full | Mathematical statistics by Jun Shao |
title_fullStr | Mathematical statistics by Jun Shao |
title_full_unstemmed | Mathematical statistics by Jun Shao |
title_short | Mathematical statistics |
title_sort | mathematical statistics |
topic | Statistics Mathematical statistics Statistical Theory and Methods Statistik Statistik (DE-588)4056995-0 gnd |
topic_facet | Statistics Mathematical statistics Statistical Theory and Methods Statistik Aufgabensammlung |
url | https://doi.org/10.1007/b98900 |
work_keys_str_mv | AT shaojun mathematicalstatistics |