Mass Transportation Problems: Volume I: Theory
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1998
|
Schriftenreihe: | Probability and its Applications, A Series of the Applied Probability Trust
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | 1.1 Mass Transportation Problems in Probability Theory This chapter provides a basic introduction to mass transportation pr- lems (MTPs). We introduce some of the methods used in studying MTPs: dualrepresentations,explicitsolutions,topologicalproperties.Weshallalso discuss some applications of MTPs. The following measure-theoretic problems are well-known continuous casesofMKPs(see,forexample,Dudley(1976),LevinandMilyutin(1979), R¨ uschendorf (1979, 1981), Kemperman (1983), Kellerer (1984), Rachev (1984b, 1991c) and the references therein). TheMonge–Kantorovichmasstransportationproblem(MKP):Given?xed probability measuresP andP on a separable metric spaceS and a mea- 1 2 surable cost functionc on the Cartesian productS×S, ?nd µ (P,P ) = inf c(x,y)P(dx, dy), (1.1.1) c 1 2 wherethein?mumistakenoverallprobabilitymeasuresP onS×S having projections ?P = P,i=1,2. (1.1.2) i i 2 1. Introduction The Kantorovich–Rubinstein transshipment problem (KRP): GivenP 1 andP onS ?nd 2 ? µ (P,P ) = inf c(x,y)Q(dx, dy), (1.1.3) 1 2 c where the in?mum is taken over all ?nite measuresQ onS×S having the marginal di?erence ?Q??Q = P ?P ; (1.1.4) 1 2 1 2 that is,Q(A×S)?Q(S×A)=P (A)?P (A) for all Borel setsA?S. |
Beschreibung: | 1 Online-Ressource (XXVI, 508 p) |
ISBN: | 9780387227559 9780387983509 |
ISSN: | 1431-7028 |
DOI: | 10.1007/b98893 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419105 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1998 |||| o||u| ||||||eng d | ||
020 | |a 9780387227559 |c Online |9 978-0-387-22755-9 | ||
020 | |a 9780387983509 |c Print |9 978-0-387-98350-9 | ||
024 | 7 | |a 10.1007/b98893 |2 doi | |
035 | |a (OCoLC)849972344 | ||
035 | |a (DE-599)BVBBV042419105 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Rachev, Svetlozar T. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Mass Transportation Problems |b Volume I: Theory |c by Svetlozar T. Rachev, Ludger Rüschendorf |
264 | 1 | |a New York, NY |b Springer New York |c 1998 | |
300 | |a 1 Online-Ressource (XXVI, 508 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Probability and its Applications, A Series of the Applied Probability Trust |x 1431-7028 | |
500 | |a 1.1 Mass Transportation Problems in Probability Theory This chapter provides a basic introduction to mass transportation pr- lems (MTPs). We introduce some of the methods used in studying MTPs: dualrepresentations,explicitsolutions,topologicalproperties.Weshallalso discuss some applications of MTPs. The following measure-theoretic problems are well-known continuous casesofMKPs(see,forexample,Dudley(1976),LevinandMilyutin(1979), R¨ uschendorf (1979, 1981), Kemperman (1983), Kellerer (1984), Rachev (1984b, 1991c) and the references therein). TheMonge–Kantorovichmasstransportationproblem(MKP):Given?xed probability measuresP andP on a separable metric spaceS and a mea- 1 2 surable cost functionc on the Cartesian productS×S, ?nd µ (P,P ) = inf c(x,y)P(dx, dy), (1.1.1) c 1 2 wherethein?mumistakenoverallprobabilitymeasuresP onS×S having projections ?P = P,i=1,2. (1.1.2) i i 2 1. Introduction The Kantorovich–Rubinstein transshipment problem (KRP): GivenP 1 andP onS ?nd 2 ? µ (P,P ) = inf c(x,y)Q(dx, dy), (1.1.3) 1 2 c where the in?mum is taken over all ?nite measuresQ onS×S having the marginal di?erence ?Q??Q = P ?P ; (1.1.4) 1 2 1 2 that is,Q(A×S)?Q(S×A)=P (A)?P (A) for all Borel setsA?S. | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Mathematik | |
700 | 1 | |a Rüschendorf, Ludger |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/b98893 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854522 |
Datensatz im Suchindex
_version_ | 1804153089359347712 |
---|---|
any_adam_object | |
author | Rachev, Svetlozar T. |
author_facet | Rachev, Svetlozar T. |
author_role | aut |
author_sort | Rachev, Svetlozar T. |
author_variant | s t r st str |
building | Verbundindex |
bvnumber | BV042419105 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)849972344 (DE-599)BVBBV042419105 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/b98893 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02648nmm a2200421zc 4500</leader><controlfield tag="001">BV042419105</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1998 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387227559</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-387-22755-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387983509</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-98350-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/b98893</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)849972344</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419105</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rachev, Svetlozar T.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mass Transportation Problems</subfield><subfield code="b">Volume I: Theory</subfield><subfield code="c">by Svetlozar T. Rachev, Ludger Rüschendorf</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXVI, 508 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Probability and its Applications, A Series of the Applied Probability Trust</subfield><subfield code="x">1431-7028</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1.1 Mass Transportation Problems in Probability Theory This chapter provides a basic introduction to mass transportation pr- lems (MTPs). We introduce some of the methods used in studying MTPs: dualrepresentations,explicitsolutions,topologicalproperties.Weshallalso discuss some applications of MTPs. The following measure-theoretic problems are well-known continuous casesofMKPs(see,forexample,Dudley(1976),LevinandMilyutin(1979), R¨ uschendorf (1979, 1981), Kemperman (1983), Kellerer (1984), Rachev (1984b, 1991c) and the references therein). TheMonge–Kantorovichmasstransportationproblem(MKP):Given?xed probability measuresP andP on a separable metric spaceS and a mea- 1 2 surable cost functionc on the Cartesian productS×S, ?nd µ (P,P ) = inf c(x,y)P(dx, dy), (1.1.1) c 1 2 wherethein?mumistakenoverallprobabilitymeasuresP onS×S having projections ?P = P,i=1,2. (1.1.2) i i 2 1. Introduction The Kantorovich–Rubinstein transshipment problem (KRP): GivenP 1 andP onS ?nd 2 ? µ (P,P ) = inf c(x,y)Q(dx, dy), (1.1.3) 1 2 c where the in?mum is taken over all ?nite measuresQ onS×S having the marginal di?erence ?Q??Q = P ?P ; (1.1.4) 1 2 1 2 that is,Q(A×S)?Q(S×A)=P (A)?P (A) for all Borel setsA?S.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rüschendorf, Ludger</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/b98893</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854522</subfield></datafield></record></collection> |
id | DE-604.BV042419105 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9780387227559 9780387983509 |
issn | 1431-7028 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854522 |
oclc_num | 849972344 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XXVI, 508 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Springer New York |
record_format | marc |
series2 | Probability and its Applications, A Series of the Applied Probability Trust |
spelling | Rachev, Svetlozar T. Verfasser aut Mass Transportation Problems Volume I: Theory by Svetlozar T. Rachev, Ludger Rüschendorf New York, NY Springer New York 1998 1 Online-Ressource (XXVI, 508 p) txt rdacontent c rdamedia cr rdacarrier Probability and its Applications, A Series of the Applied Probability Trust 1431-7028 1.1 Mass Transportation Problems in Probability Theory This chapter provides a basic introduction to mass transportation pr- lems (MTPs). We introduce some of the methods used in studying MTPs: dualrepresentations,explicitsolutions,topologicalproperties.Weshallalso discuss some applications of MTPs. The following measure-theoretic problems are well-known continuous casesofMKPs(see,forexample,Dudley(1976),LevinandMilyutin(1979), R¨ uschendorf (1979, 1981), Kemperman (1983), Kellerer (1984), Rachev (1984b, 1991c) and the references therein). TheMonge–Kantorovichmasstransportationproblem(MKP):Given?xed probability measuresP andP on a separable metric spaceS and a mea- 1 2 surable cost functionc on the Cartesian productS×S, ?nd µ (P,P ) = inf c(x,y)P(dx, dy), (1.1.1) c 1 2 wherethein?mumistakenoverallprobabilitymeasuresP onS×S having projections ?P = P,i=1,2. (1.1.2) i i 2 1. Introduction The Kantorovich–Rubinstein transshipment problem (KRP): GivenP 1 andP onS ?nd 2 ? µ (P,P ) = inf c(x,y)Q(dx, dy), (1.1.3) 1 2 c where the in?mum is taken over all ?nite measuresQ onS×S having the marginal di?erence ?Q??Q = P ?P ; (1.1.4) 1 2 1 2 that is,Q(A×S)?Q(S×A)=P (A)?P (A) for all Borel setsA?S. Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Rüschendorf, Ludger Sonstige oth https://doi.org/10.1007/b98893 Verlag Volltext |
spellingShingle | Rachev, Svetlozar T. Mass Transportation Problems Volume I: Theory Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik |
title | Mass Transportation Problems Volume I: Theory |
title_auth | Mass Transportation Problems Volume I: Theory |
title_exact_search | Mass Transportation Problems Volume I: Theory |
title_full | Mass Transportation Problems Volume I: Theory by Svetlozar T. Rachev, Ludger Rüschendorf |
title_fullStr | Mass Transportation Problems Volume I: Theory by Svetlozar T. Rachev, Ludger Rüschendorf |
title_full_unstemmed | Mass Transportation Problems Volume I: Theory by Svetlozar T. Rachev, Ludger Rüschendorf |
title_short | Mass Transportation Problems |
title_sort | mass transportation problems volume i theory |
title_sub | Volume I: Theory |
topic | Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik |
topic_facet | Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik |
url | https://doi.org/10.1007/b98893 |
work_keys_str_mv | AT rachevsvetlozart masstransportationproblemsvolumeitheory AT ruschendorfludger masstransportationproblemsvolumeitheory |