Elementary Methods in Number Theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
2000
|
Schriftenreihe: | Graduate Texts in Mathematics
195 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Elementary Methods in Number Theory begins with "a first course in number theory" for students with no previous knowledge of the subject. The main topics are divisibility, prime numbers, and congruences. There is also an introduction to Fourier analysis on finite abelian groups, and a discussion on the abc conjecture and its consequences in elementary number theory. In the second and third parts of the book, deep results in number theory are proved using only elementary methods. Part II is about multiplicative number theory, and includes two of the most famous results in mathematics: the Erdös-Selberg elementary proof of the prime number theorem, and Dirichlets theorem on primes in arithmetic progressions. Part III is an introduction to three classical topics in additive number theory: Warings problems for polynomials, Liouvilles method to determine the number of representations of an integer as the sum of an even number of squares, and the asymptotics of partition functions. Melvyn B. Nathanson is Professor of Mathematics at the City University of New York (Lehman College and the Graduate Center). He is the author of the two other graduate texts: Additive Number Theory: The Classical Bases and Additive Number Theory: Inverse Problems and the Geometry of Sumsets |
Beschreibung: | 1 Online-Ressource (XVIII, 514 p) |
ISBN: | 9780387227382 9780387989129 |
ISSN: | 0072-5285 |
DOI: | 10.1007/b98870 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042419093 | ||
003 | DE-604 | ||
005 | 20180313 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2000 |||| o||u| ||||||eng d | ||
020 | |a 9780387227382 |c Online |9 978-0-387-22738-2 | ||
020 | |a 9780387989129 |c Print |9 978-0-387-98912-9 | ||
024 | 7 | |a 10.1007/b98870 |2 doi | |
035 | |a (OCoLC)704459175 | ||
035 | |a (DE-599)BVBBV042419093 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.7 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Nathanson, Melvyn B. |d 1944- |e Verfasser |0 (DE-588)121815226 |4 aut | |
245 | 1 | 0 | |a Elementary Methods in Number Theory |c by Melvyn B. Nathanson |
264 | 1 | |a New York, NY |b Springer New York |c 2000 | |
300 | |a 1 Online-Ressource (XVIII, 514 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Graduate Texts in Mathematics |v 195 |x 0072-5285 | |
500 | |a Elementary Methods in Number Theory begins with "a first course in number theory" for students with no previous knowledge of the subject. The main topics are divisibility, prime numbers, and congruences. There is also an introduction to Fourier analysis on finite abelian groups, and a discussion on the abc conjecture and its consequences in elementary number theory. In the second and third parts of the book, deep results in number theory are proved using only elementary methods. Part II is about multiplicative number theory, and includes two of the most famous results in mathematics: the Erdös-Selberg elementary proof of the prime number theorem, and Dirichlets theorem on primes in arithmetic progressions. Part III is an introduction to three classical topics in additive number theory: Warings problems for polynomials, Liouvilles method to determine the number of representations of an integer as the sum of an even number of squares, and the asymptotics of partition functions. Melvyn B. Nathanson is Professor of Mathematics at the City University of New York (Lehman College and the Graduate Center). He is the author of the two other graduate texts: Additive Number Theory: The Classical Bases and Additive Number Theory: Inverse Problems and the Geometry of Sumsets | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Number theory | |
650 | 4 | |a Number Theory | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Zahlentheorie |0 (DE-588)4067277-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Zahlentheorie |0 (DE-588)4067277-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/b98870 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854510 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153089321598976 |
---|---|
any_adam_object | |
author | Nathanson, Melvyn B. 1944- |
author_GND | (DE-588)121815226 |
author_facet | Nathanson, Melvyn B. 1944- |
author_role | aut |
author_sort | Nathanson, Melvyn B. 1944- |
author_variant | m b n mb mbn |
building | Verbundindex |
bvnumber | BV042419093 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)704459175 (DE-599)BVBBV042419093 |
dewey-full | 512.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7 |
dewey-search | 512.7 |
dewey-sort | 3512.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/b98870 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02801nmm a2200457zcb4500</leader><controlfield tag="001">BV042419093</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180313 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387227382</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-387-22738-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387989129</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-98912-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/b98870</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)704459175</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419093</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nathanson, Melvyn B.</subfield><subfield code="d">1944-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121815226</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elementary Methods in Number Theory</subfield><subfield code="c">by Melvyn B. Nathanson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVIII, 514 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Graduate Texts in Mathematics</subfield><subfield code="v">195</subfield><subfield code="x">0072-5285</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Elementary Methods in Number Theory begins with "a first course in number theory" for students with no previous knowledge of the subject. The main topics are divisibility, prime numbers, and congruences. There is also an introduction to Fourier analysis on finite abelian groups, and a discussion on the abc conjecture and its consequences in elementary number theory. In the second and third parts of the book, deep results in number theory are proved using only elementary methods. Part II is about multiplicative number theory, and includes two of the most famous results in mathematics: the Erdös-Selberg elementary proof of the prime number theorem, and Dirichlets theorem on primes in arithmetic progressions. Part III is an introduction to three classical topics in additive number theory: Warings problems for polynomials, Liouvilles method to determine the number of representations of an integer as the sum of an even number of squares, and the asymptotics of partition functions. Melvyn B. Nathanson is Professor of Mathematics at the City University of New York (Lehman College and the Graduate Center). He is the author of the two other graduate texts: Additive Number Theory: The Classical Bases and Additive Number Theory: Inverse Problems and the Geometry of Sumsets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/b98870</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854510</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419093 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9780387227382 9780387989129 |
issn | 0072-5285 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854510 |
oclc_num | 704459175 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVIII, 514 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Springer New York |
record_format | marc |
series2 | Graduate Texts in Mathematics |
spelling | Nathanson, Melvyn B. 1944- Verfasser (DE-588)121815226 aut Elementary Methods in Number Theory by Melvyn B. Nathanson New York, NY Springer New York 2000 1 Online-Ressource (XVIII, 514 p) txt rdacontent c rdamedia cr rdacarrier Graduate Texts in Mathematics 195 0072-5285 Elementary Methods in Number Theory begins with "a first course in number theory" for students with no previous knowledge of the subject. The main topics are divisibility, prime numbers, and congruences. There is also an introduction to Fourier analysis on finite abelian groups, and a discussion on the abc conjecture and its consequences in elementary number theory. In the second and third parts of the book, deep results in number theory are proved using only elementary methods. Part II is about multiplicative number theory, and includes two of the most famous results in mathematics: the Erdös-Selberg elementary proof of the prime number theorem, and Dirichlets theorem on primes in arithmetic progressions. Part III is an introduction to three classical topics in additive number theory: Warings problems for polynomials, Liouvilles method to determine the number of representations of an integer as the sum of an even number of squares, and the asymptotics of partition functions. Melvyn B. Nathanson is Professor of Mathematics at the City University of New York (Lehman College and the Graduate Center). He is the author of the two other graduate texts: Additive Number Theory: The Classical Bases and Additive Number Theory: Inverse Problems and the Geometry of Sumsets Mathematics Number theory Number Theory Mathematik Zahlentheorie (DE-588)4067277-3 gnd rswk-swf Zahlentheorie (DE-588)4067277-3 s 1\p DE-604 https://doi.org/10.1007/b98870 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Nathanson, Melvyn B. 1944- Elementary Methods in Number Theory Mathematics Number theory Number Theory Mathematik Zahlentheorie (DE-588)4067277-3 gnd |
subject_GND | (DE-588)4067277-3 |
title | Elementary Methods in Number Theory |
title_auth | Elementary Methods in Number Theory |
title_exact_search | Elementary Methods in Number Theory |
title_full | Elementary Methods in Number Theory by Melvyn B. Nathanson |
title_fullStr | Elementary Methods in Number Theory by Melvyn B. Nathanson |
title_full_unstemmed | Elementary Methods in Number Theory by Melvyn B. Nathanson |
title_short | Elementary Methods in Number Theory |
title_sort | elementary methods in number theory |
topic | Mathematics Number theory Number Theory Mathematik Zahlentheorie (DE-588)4067277-3 gnd |
topic_facet | Mathematics Number theory Number Theory Mathematik Zahlentheorie |
url | https://doi.org/10.1007/b98870 |
work_keys_str_mv | AT nathansonmelvynb elementarymethodsinnumbertheory |