Single-Facility Location Problems with Barriers:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
2002
|
Schriftenreihe: | Springer Series in Operations Research
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Everyday life bears a multitude of location problems and locational decisions. These may be as simple as how best to place a pencil on a desk without having to reach too far and still keeping the work space clear, up to the question of where to place the next out of hundreds of thousands of transistors on a microchip. Some of these questions have easy answers, while others are so complex that not even satisfactory solutions are available, never mind asking for optimized placement. The scales of problems reach from microchip design up to global trade and may demand consideration of one, two, three, or even more dimensions. As modern life encounters an ever increasing concentration in many aspects, usually a multitude of restrictions will be imposed on a problem. These restrictions may be classified as regions of limited or forbidden placement of a new facility or as regions with limitations on traveling. Areas where the placement of a new facility is forbidden, referred to as forbidden regions, can be used to model, for example, protected areas or regions where the geographic characteristics forbid the construction of the desired facility. Limitations on traveling are constituted by barrier regions or obstacles like military regions, mountain ranges, lakes, big rivers, interstate highways, or, on smaller scales, machinery and conveyor belts in an industrial plant |
Beschreibung: | 1 Online-Ressource (XII, 202 p) |
ISBN: | 9780387227078 9781441930279 |
ISSN: | 1431-8598 |
DOI: | 10.1007/b98843 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419077 | ||
003 | DE-604 | ||
005 | 20170925 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2002 |||| o||u| ||||||eng d | ||
020 | |a 9780387227078 |c Online |9 978-0-387-22707-8 | ||
020 | |a 9781441930279 |c Print |9 978-1-4419-3027-9 | ||
024 | 7 | |a 10.1007/b98843 |2 doi | |
035 | |a (OCoLC)1184691152 | ||
035 | |a (DE-599)BVBBV042419077 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.6 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Klamroth, Kathrin |e Verfasser |4 aut | |
245 | 1 | 0 | |a Single-Facility Location Problems with Barriers |c by Kathrin Klamroth |
264 | 1 | |a New York, NY |b Springer New York |c 2002 | |
300 | |a 1 Online-Ressource (XII, 202 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Series in Operations Research |x 1431-8598 | |
500 | |a Everyday life bears a multitude of location problems and locational decisions. These may be as simple as how best to place a pencil on a desk without having to reach too far and still keeping the work space clear, up to the question of where to place the next out of hundreds of thousands of transistors on a microchip. Some of these questions have easy answers, while others are so complex that not even satisfactory solutions are available, never mind asking for optimized placement. The scales of problems reach from microchip design up to global trade and may demand consideration of one, two, three, or even more dimensions. As modern life encounters an ever increasing concentration in many aspects, usually a multitude of restrictions will be imposed on a problem. These restrictions may be classified as regions of limited or forbidden placement of a new facility or as regions with limitations on traveling. Areas where the placement of a new facility is forbidden, referred to as forbidden regions, can be used to model, for example, protected areas or regions where the geographic characteristics forbid the construction of the desired facility. Limitations on traveling are constituted by barrier regions or obstacles like military regions, mountain ranges, lakes, big rivers, interstate highways, or, on smaller scales, machinery and conveyor belts in an industrial plant | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Industrial organization (Economic theory) | |
650 | 4 | |a Operations research | |
650 | 4 | |a Optimization | |
650 | 4 | |a Operation Research/Decision Theory | |
650 | 4 | |a Operations Research, Management Science | |
650 | 4 | |a Industrial Organization | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Standortproblem |0 (DE-588)4301515-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Standortproblem |0 (DE-588)4301515-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/b98843 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854494 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153089295384576 |
---|---|
any_adam_object | |
author | Klamroth, Kathrin |
author_facet | Klamroth, Kathrin |
author_role | aut |
author_sort | Klamroth, Kathrin |
author_variant | k k kk |
building | Verbundindex |
bvnumber | BV042419077 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184691152 (DE-599)BVBBV042419077 |
dewey-full | 519.6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.6 |
dewey-search | 519.6 |
dewey-sort | 3519.6 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/b98843 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03141nmm a2200517zc 4500</leader><controlfield tag="001">BV042419077</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170925 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387227078</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-387-22707-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441930279</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4419-3027-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/b98843</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184691152</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419077</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.6</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Klamroth, Kathrin</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Single-Facility Location Problems with Barriers</subfield><subfield code="c">by Kathrin Klamroth</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 202 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Series in Operations Research</subfield><subfield code="x">1431-8598</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Everyday life bears a multitude of location problems and locational decisions. These may be as simple as how best to place a pencil on a desk without having to reach too far and still keeping the work space clear, up to the question of where to place the next out of hundreds of thousands of transistors on a microchip. Some of these questions have easy answers, while others are so complex that not even satisfactory solutions are available, never mind asking for optimized placement. The scales of problems reach from microchip design up to global trade and may demand consideration of one, two, three, or even more dimensions. As modern life encounters an ever increasing concentration in many aspects, usually a multitude of restrictions will be imposed on a problem. These restrictions may be classified as regions of limited or forbidden placement of a new facility or as regions with limitations on traveling. Areas where the placement of a new facility is forbidden, referred to as forbidden regions, can be used to model, for example, protected areas or regions where the geographic characteristics forbid the construction of the desired facility. Limitations on traveling are constituted by barrier regions or obstacles like military regions, mountain ranges, lakes, big rivers, interstate highways, or, on smaller scales, machinery and conveyor belts in an industrial plant</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Industrial organization (Economic theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operation Research/Decision Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations Research, Management Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Industrial Organization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Standortproblem</subfield><subfield code="0">(DE-588)4301515-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Standortproblem</subfield><subfield code="0">(DE-588)4301515-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/b98843</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854494</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419077 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9780387227078 9781441930279 |
issn | 1431-8598 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854494 |
oclc_num | 1184691152 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 202 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Springer New York |
record_format | marc |
series2 | Springer Series in Operations Research |
spelling | Klamroth, Kathrin Verfasser aut Single-Facility Location Problems with Barriers by Kathrin Klamroth New York, NY Springer New York 2002 1 Online-Ressource (XII, 202 p) txt rdacontent c rdamedia cr rdacarrier Springer Series in Operations Research 1431-8598 Everyday life bears a multitude of location problems and locational decisions. These may be as simple as how best to place a pencil on a desk without having to reach too far and still keeping the work space clear, up to the question of where to place the next out of hundreds of thousands of transistors on a microchip. Some of these questions have easy answers, while others are so complex that not even satisfactory solutions are available, never mind asking for optimized placement. The scales of problems reach from microchip design up to global trade and may demand consideration of one, two, three, or even more dimensions. As modern life encounters an ever increasing concentration in many aspects, usually a multitude of restrictions will be imposed on a problem. These restrictions may be classified as regions of limited or forbidden placement of a new facility or as regions with limitations on traveling. Areas where the placement of a new facility is forbidden, referred to as forbidden regions, can be used to model, for example, protected areas or regions where the geographic characteristics forbid the construction of the desired facility. Limitations on traveling are constituted by barrier regions or obstacles like military regions, mountain ranges, lakes, big rivers, interstate highways, or, on smaller scales, machinery and conveyor belts in an industrial plant Mathematics Mathematical optimization Industrial organization (Economic theory) Operations research Optimization Operation Research/Decision Theory Operations Research, Management Science Industrial Organization Mathematik Standortproblem (DE-588)4301515-3 gnd rswk-swf Standortproblem (DE-588)4301515-3 s 1\p DE-604 https://doi.org/10.1007/b98843 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Klamroth, Kathrin Single-Facility Location Problems with Barriers Mathematics Mathematical optimization Industrial organization (Economic theory) Operations research Optimization Operation Research/Decision Theory Operations Research, Management Science Industrial Organization Mathematik Standortproblem (DE-588)4301515-3 gnd |
subject_GND | (DE-588)4301515-3 |
title | Single-Facility Location Problems with Barriers |
title_auth | Single-Facility Location Problems with Barriers |
title_exact_search | Single-Facility Location Problems with Barriers |
title_full | Single-Facility Location Problems with Barriers by Kathrin Klamroth |
title_fullStr | Single-Facility Location Problems with Barriers by Kathrin Klamroth |
title_full_unstemmed | Single-Facility Location Problems with Barriers by Kathrin Klamroth |
title_short | Single-Facility Location Problems with Barriers |
title_sort | single facility location problems with barriers |
topic | Mathematics Mathematical optimization Industrial organization (Economic theory) Operations research Optimization Operation Research/Decision Theory Operations Research, Management Science Industrial Organization Mathematik Standortproblem (DE-588)4301515-3 gnd |
topic_facet | Mathematics Mathematical optimization Industrial organization (Economic theory) Operations research Optimization Operation Research/Decision Theory Operations Research, Management Science Industrial Organization Mathematik Standortproblem |
url | https://doi.org/10.1007/b98843 |
work_keys_str_mv | AT klamrothkathrin singlefacilitylocationproblemswithbarriers |