Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
2000
|
Schriftenreihe: | Universitext
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Simple Ordinary Differential Equations may have solutions in terms of power series whose coefficients grow at such a rate that the series has a radius of convergence equal to zero. In fact, every linear meromorphic system has a formal solution of a certain form, which can be relatively easily computed, but which generally involves such power series diverging everywhere. In this book the author presents the classical theory of meromorphic systems of ODE in the new light shed upon it by the recent achievements in the theory of summability of formal power series |
Beschreibung: | 1 Online-Ressource (XVIII, 301 p) |
ISBN: | 9780387225982 9780387986906 |
DOI: | 10.1007/b97608 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419039 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2000 |||| o||u| ||||||eng d | ||
020 | |a 9780387225982 |c Online |9 978-0-387-22598-2 | ||
020 | |a 9780387986906 |c Print |9 978-0-387-98690-6 | ||
024 | 7 | |a 10.1007/b97608 |2 doi | |
035 | |a (OCoLC)704468671 | ||
035 | |a (DE-599)BVBBV042419039 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Balser, Werner |e Verfasser |4 aut | |
245 | 1 | 0 | |a Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations |c by Werner Balser |
264 | 1 | |a New York, NY |b Springer New York |c 2000 | |
300 | |a 1 Online-Ressource (XVIII, 301 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Universitext | |
500 | |a Simple Ordinary Differential Equations may have solutions in terms of power series whose coefficients grow at such a rate that the series has a radius of convergence equal to zero. In fact, every linear meromorphic system has a formal solution of a certain form, which can be relatively easily computed, but which generally involves such power series diverging everywhere. In this book the author presents the classical theory of meromorphic systems of ODE in the new light shed upon it by the recent achievements in the theory of summability of formal power series | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a System von gewöhnlichen Differentialgleichungen |0 (DE-588)4116671-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Meromorphe Funktion |0 (DE-588)4136862-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Formale Potenzreihe |0 (DE-588)4204495-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Meromorphe Differentialgleichung |0 (DE-588)4605443-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lineares Differentialgleichungssystem |0 (DE-588)4452554-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lineare gewöhnliche Differentialgleichung |0 (DE-588)4353441-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Komplexe Ebene |0 (DE-588)4481425-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a System von gewöhnlichen Differentialgleichungen |0 (DE-588)4116671-1 |D s |
689 | 0 | 1 | |a Lineares Differentialgleichungssystem |0 (DE-588)4452554-0 |D s |
689 | 0 | 2 | |a Meromorphe Differentialgleichung |0 (DE-588)4605443-1 |D s |
689 | 0 | 3 | |a Formale Potenzreihe |0 (DE-588)4204495-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Lineare gewöhnliche Differentialgleichung |0 (DE-588)4353441-7 |D s |
689 | 1 | 1 | |a Komplexe Ebene |0 (DE-588)4481425-2 |D s |
689 | 1 | 2 | |a Meromorphe Funktion |0 (DE-588)4136862-9 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/b97608 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854456 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153089235615744 |
---|---|
any_adam_object | |
author | Balser, Werner |
author_facet | Balser, Werner |
author_role | aut |
author_sort | Balser, Werner |
author_variant | w b wb |
building | Verbundindex |
bvnumber | BV042419039 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)704468671 (DE-599)BVBBV042419039 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/b97608 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03121nmm a2200625zc 4500</leader><controlfield tag="001">BV042419039</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387225982</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-387-22598-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387986906</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-98690-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/b97608</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)704468671</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419039</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Balser, Werner</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations</subfield><subfield code="c">by Werner Balser</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVIII, 301 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Simple Ordinary Differential Equations may have solutions in terms of power series whose coefficients grow at such a rate that the series has a radius of convergence equal to zero. In fact, every linear meromorphic system has a formal solution of a certain form, which can be relatively easily computed, but which generally involves such power series diverging everywhere. In this book the author presents the classical theory of meromorphic systems of ODE in the new light shed upon it by the recent achievements in the theory of summability of formal power series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">System von gewöhnlichen Differentialgleichungen</subfield><subfield code="0">(DE-588)4116671-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Meromorphe Funktion</subfield><subfield code="0">(DE-588)4136862-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Formale Potenzreihe</subfield><subfield code="0">(DE-588)4204495-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Meromorphe Differentialgleichung</subfield><subfield code="0">(DE-588)4605443-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineares Differentialgleichungssystem</subfield><subfield code="0">(DE-588)4452554-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4353441-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komplexe Ebene</subfield><subfield code="0">(DE-588)4481425-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">System von gewöhnlichen Differentialgleichungen</subfield><subfield code="0">(DE-588)4116671-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Lineares Differentialgleichungssystem</subfield><subfield code="0">(DE-588)4452554-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Meromorphe Differentialgleichung</subfield><subfield code="0">(DE-588)4605443-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Formale Potenzreihe</subfield><subfield code="0">(DE-588)4204495-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lineare gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4353441-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Komplexe Ebene</subfield><subfield code="0">(DE-588)4481425-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Meromorphe Funktion</subfield><subfield code="0">(DE-588)4136862-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/b97608</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854456</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419039 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9780387225982 9780387986906 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854456 |
oclc_num | 704468671 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVIII, 301 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Springer New York |
record_format | marc |
series2 | Universitext |
spelling | Balser, Werner Verfasser aut Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations by Werner Balser New York, NY Springer New York 2000 1 Online-Ressource (XVIII, 301 p) txt rdacontent c rdamedia cr rdacarrier Universitext Simple Ordinary Differential Equations may have solutions in terms of power series whose coefficients grow at such a rate that the series has a radius of convergence equal to zero. In fact, every linear meromorphic system has a formal solution of a certain form, which can be relatively easily computed, but which generally involves such power series diverging everywhere. In this book the author presents the classical theory of meromorphic systems of ODE in the new light shed upon it by the recent achievements in the theory of summability of formal power series Mathematics Global analysis (Mathematics) Analysis Mathematik System von gewöhnlichen Differentialgleichungen (DE-588)4116671-1 gnd rswk-swf Meromorphe Funktion (DE-588)4136862-9 gnd rswk-swf Formale Potenzreihe (DE-588)4204495-9 gnd rswk-swf Meromorphe Differentialgleichung (DE-588)4605443-1 gnd rswk-swf Lineares Differentialgleichungssystem (DE-588)4452554-0 gnd rswk-swf Lineare gewöhnliche Differentialgleichung (DE-588)4353441-7 gnd rswk-swf Komplexe Ebene (DE-588)4481425-2 gnd rswk-swf System von gewöhnlichen Differentialgleichungen (DE-588)4116671-1 s Lineares Differentialgleichungssystem (DE-588)4452554-0 s Meromorphe Differentialgleichung (DE-588)4605443-1 s Formale Potenzreihe (DE-588)4204495-9 s 1\p DE-604 Lineare gewöhnliche Differentialgleichung (DE-588)4353441-7 s Komplexe Ebene (DE-588)4481425-2 s Meromorphe Funktion (DE-588)4136862-9 s 2\p DE-604 https://doi.org/10.1007/b97608 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Balser, Werner Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations Mathematics Global analysis (Mathematics) Analysis Mathematik System von gewöhnlichen Differentialgleichungen (DE-588)4116671-1 gnd Meromorphe Funktion (DE-588)4136862-9 gnd Formale Potenzreihe (DE-588)4204495-9 gnd Meromorphe Differentialgleichung (DE-588)4605443-1 gnd Lineares Differentialgleichungssystem (DE-588)4452554-0 gnd Lineare gewöhnliche Differentialgleichung (DE-588)4353441-7 gnd Komplexe Ebene (DE-588)4481425-2 gnd |
subject_GND | (DE-588)4116671-1 (DE-588)4136862-9 (DE-588)4204495-9 (DE-588)4605443-1 (DE-588)4452554-0 (DE-588)4353441-7 (DE-588)4481425-2 |
title | Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations |
title_auth | Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations |
title_exact_search | Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations |
title_full | Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations by Werner Balser |
title_fullStr | Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations by Werner Balser |
title_full_unstemmed | Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations by Werner Balser |
title_short | Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations |
title_sort | formal power series and linear systems of meromorphic ordinary differential equations |
topic | Mathematics Global analysis (Mathematics) Analysis Mathematik System von gewöhnlichen Differentialgleichungen (DE-588)4116671-1 gnd Meromorphe Funktion (DE-588)4136862-9 gnd Formale Potenzreihe (DE-588)4204495-9 gnd Meromorphe Differentialgleichung (DE-588)4605443-1 gnd Lineares Differentialgleichungssystem (DE-588)4452554-0 gnd Lineare gewöhnliche Differentialgleichung (DE-588)4353441-7 gnd Komplexe Ebene (DE-588)4481425-2 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Analysis Mathematik System von gewöhnlichen Differentialgleichungen Meromorphe Funktion Formale Potenzreihe Meromorphe Differentialgleichung Lineares Differentialgleichungssystem Lineare gewöhnliche Differentialgleichung Komplexe Ebene |
url | https://doi.org/10.1007/b97608 |
work_keys_str_mv | AT balserwerner formalpowerseriesandlinearsystemsofmeromorphicordinarydifferentialequations |