Asymptotic Cones and Functions in Optimization and Variational Inequalities:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
2003
|
Schriftenreihe: | Springer Monographs in Mathematics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Nonlinear applied analysis and in particular the related ?elds of continuous optimization and variational inequality problems have gone through major developments over the last three decades and have reached maturity. A pivotal role in these developments has been played by convex analysis, a rich area covering a broad range of problems in mathematical sciences and its applications. Separation of convex sets and the Legendre–Fenchel conjugate transforms are fundamental notions that have laid the ground for these fruitful developments. Two other fundamental notions that have contributed to making convex analysis a powerful analytical tool and that haveoftenbeenhiddeninthesedevelopmentsarethenotionsofasymptotic sets and functions. The purpose of this book is to provide a systematic and comprehensive account of asymptotic sets and functions, from which a broad and u- ful theory emerges in the areas of optimization and variational inequa- ties. There is a variety of motivations that led mathematicians to study questions revolving around attaintment of the in?mum in a minimization problem and its stability, duality and minmax theorems, convexi?cation of sets and functions, and maximal monotone maps. In all these topics we are faced with the central problem of handling unbounded situations |
Beschreibung: | 1 Online-Ressource (XII, 249 p) |
ISBN: | 9780387225906 9780387955209 |
ISSN: | 1439-7382 |
DOI: | 10.1007/b97594 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419037 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2003 |||| o||u| ||||||eng d | ||
020 | |a 9780387225906 |c Online |9 978-0-387-22590-6 | ||
020 | |a 9780387955209 |c Print |9 978-0-387-95520-9 | ||
024 | 7 | |a 10.1007/b97594 |2 doi | |
035 | |a (OCoLC)704496357 | ||
035 | |a (DE-599)BVBBV042419037 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.64 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Auslender, Alfred |e Verfasser |4 aut | |
245 | 1 | 0 | |a Asymptotic Cones and Functions in Optimization and Variational Inequalities |c by Alfred Auslender, Marc Teboulle |
264 | 1 | |a New York, NY |b Springer New York |c 2003 | |
300 | |a 1 Online-Ressource (XII, 249 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Monographs in Mathematics |x 1439-7382 | |
500 | |a Nonlinear applied analysis and in particular the related ?elds of continuous optimization and variational inequality problems have gone through major developments over the last three decades and have reached maturity. A pivotal role in these developments has been played by convex analysis, a rich area covering a broad range of problems in mathematical sciences and its applications. Separation of convex sets and the Legendre–Fenchel conjugate transforms are fundamental notions that have laid the ground for these fruitful developments. Two other fundamental notions that have contributed to making convex analysis a powerful analytical tool and that haveoftenbeenhiddeninthesedevelopmentsarethenotionsofasymptotic sets and functions. The purpose of this book is to provide a systematic and comprehensive account of asymptotic sets and functions, from which a broad and u- ful theory emerges in the areas of optimization and variational inequa- ties. There is a variety of motivations that led mathematicians to study questions revolving around attaintment of the in?mum in a minimization problem and its stability, duality and minmax theorems, convexi?cation of sets and functions, and maximal monotone maps. In all these topics we are faced with the central problem of handling unbounded situations | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Operations research | |
650 | 4 | |a Calculus of Variations and Optimal Control; Optimization | |
650 | 4 | |a Optimization | |
650 | 4 | |a Operations Research, Mathematical Programming | |
650 | 4 | |a Operations Research/Decision Theory | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Variationsungleichung |0 (DE-588)4187420-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Asymptotik |0 (DE-588)4126634-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Optimierung |0 (DE-588)4128192-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Variationsungleichung |0 (DE-588)4187420-1 |D s |
689 | 0 | 1 | |a Asymptotik |0 (DE-588)4126634-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Nichtlineare Optimierung |0 (DE-588)4128192-5 |D s |
689 | 1 | 1 | |a Asymptotik |0 (DE-588)4126634-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Teboulle, Marc |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/b97594 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854454 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153089228275712 |
---|---|
any_adam_object | |
author | Auslender, Alfred |
author_facet | Auslender, Alfred |
author_role | aut |
author_sort | Auslender, Alfred |
author_variant | a a aa |
building | Verbundindex |
bvnumber | BV042419037 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)704496357 (DE-599)BVBBV042419037 |
dewey-full | 515.64 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.64 |
dewey-search | 515.64 |
dewey-sort | 3515.64 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/b97594 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03552nmm a2200601zc 4500</leader><controlfield tag="001">BV042419037</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387225906</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-387-22590-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387955209</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-95520-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/b97594</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)704496357</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419037</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.64</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Auslender, Alfred</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Asymptotic Cones and Functions in Optimization and Variational Inequalities</subfield><subfield code="c">by Alfred Auslender, Marc Teboulle</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 249 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Monographs in Mathematics</subfield><subfield code="x">1439-7382</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Nonlinear applied analysis and in particular the related ?elds of continuous optimization and variational inequality problems have gone through major developments over the last three decades and have reached maturity. A pivotal role in these developments has been played by convex analysis, a rich area covering a broad range of problems in mathematical sciences and its applications. Separation of convex sets and the Legendre–Fenchel conjugate transforms are fundamental notions that have laid the ground for these fruitful developments. Two other fundamental notions that have contributed to making convex analysis a powerful analytical tool and that haveoftenbeenhiddeninthesedevelopmentsarethenotionsofasymptotic sets and functions. The purpose of this book is to provide a systematic and comprehensive account of asymptotic sets and functions, from which a broad and u- ful theory emerges in the areas of optimization and variational inequa- ties. There is a variety of motivations that led mathematicians to study questions revolving around attaintment of the in?mum in a minimization problem and its stability, duality and minmax theorems, convexi?cation of sets and functions, and maximal monotone maps. In all these topics we are faced with the central problem of handling unbounded situations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of Variations and Optimal Control; Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations Research, Mathematical Programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations Research/Decision Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Variationsungleichung</subfield><subfield code="0">(DE-588)4187420-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Asymptotik</subfield><subfield code="0">(DE-588)4126634-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Optimierung</subfield><subfield code="0">(DE-588)4128192-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Variationsungleichung</subfield><subfield code="0">(DE-588)4187420-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Asymptotik</subfield><subfield code="0">(DE-588)4126634-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Nichtlineare Optimierung</subfield><subfield code="0">(DE-588)4128192-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Asymptotik</subfield><subfield code="0">(DE-588)4126634-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Teboulle, Marc</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/b97594</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854454</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419037 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9780387225906 9780387955209 |
issn | 1439-7382 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854454 |
oclc_num | 704496357 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 249 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Springer New York |
record_format | marc |
series2 | Springer Monographs in Mathematics |
spelling | Auslender, Alfred Verfasser aut Asymptotic Cones and Functions in Optimization and Variational Inequalities by Alfred Auslender, Marc Teboulle New York, NY Springer New York 2003 1 Online-Ressource (XII, 249 p) txt rdacontent c rdamedia cr rdacarrier Springer Monographs in Mathematics 1439-7382 Nonlinear applied analysis and in particular the related ?elds of continuous optimization and variational inequality problems have gone through major developments over the last three decades and have reached maturity. A pivotal role in these developments has been played by convex analysis, a rich area covering a broad range of problems in mathematical sciences and its applications. Separation of convex sets and the Legendre–Fenchel conjugate transforms are fundamental notions that have laid the ground for these fruitful developments. Two other fundamental notions that have contributed to making convex analysis a powerful analytical tool and that haveoftenbeenhiddeninthesedevelopmentsarethenotionsofasymptotic sets and functions. The purpose of this book is to provide a systematic and comprehensive account of asymptotic sets and functions, from which a broad and u- ful theory emerges in the areas of optimization and variational inequa- ties. There is a variety of motivations that led mathematicians to study questions revolving around attaintment of the in?mum in a minimization problem and its stability, duality and minmax theorems, convexi?cation of sets and functions, and maximal monotone maps. In all these topics we are faced with the central problem of handling unbounded situations Mathematics Mathematical optimization Operations research Calculus of Variations and Optimal Control; Optimization Optimization Operations Research, Mathematical Programming Operations Research/Decision Theory Mathematik Variationsungleichung (DE-588)4187420-1 gnd rswk-swf Asymptotik (DE-588)4126634-1 gnd rswk-swf Nichtlineare Optimierung (DE-588)4128192-5 gnd rswk-swf Variationsungleichung (DE-588)4187420-1 s Asymptotik (DE-588)4126634-1 s 1\p DE-604 Nichtlineare Optimierung (DE-588)4128192-5 s 2\p DE-604 Teboulle, Marc Sonstige oth https://doi.org/10.1007/b97594 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Auslender, Alfred Asymptotic Cones and Functions in Optimization and Variational Inequalities Mathematics Mathematical optimization Operations research Calculus of Variations and Optimal Control; Optimization Optimization Operations Research, Mathematical Programming Operations Research/Decision Theory Mathematik Variationsungleichung (DE-588)4187420-1 gnd Asymptotik (DE-588)4126634-1 gnd Nichtlineare Optimierung (DE-588)4128192-5 gnd |
subject_GND | (DE-588)4187420-1 (DE-588)4126634-1 (DE-588)4128192-5 |
title | Asymptotic Cones and Functions in Optimization and Variational Inequalities |
title_auth | Asymptotic Cones and Functions in Optimization and Variational Inequalities |
title_exact_search | Asymptotic Cones and Functions in Optimization and Variational Inequalities |
title_full | Asymptotic Cones and Functions in Optimization and Variational Inequalities by Alfred Auslender, Marc Teboulle |
title_fullStr | Asymptotic Cones and Functions in Optimization and Variational Inequalities by Alfred Auslender, Marc Teboulle |
title_full_unstemmed | Asymptotic Cones and Functions in Optimization and Variational Inequalities by Alfred Auslender, Marc Teboulle |
title_short | Asymptotic Cones and Functions in Optimization and Variational Inequalities |
title_sort | asymptotic cones and functions in optimization and variational inequalities |
topic | Mathematics Mathematical optimization Operations research Calculus of Variations and Optimal Control; Optimization Optimization Operations Research, Mathematical Programming Operations Research/Decision Theory Mathematik Variationsungleichung (DE-588)4187420-1 gnd Asymptotik (DE-588)4126634-1 gnd Nichtlineare Optimierung (DE-588)4128192-5 gnd |
topic_facet | Mathematics Mathematical optimization Operations research Calculus of Variations and Optimal Control; Optimization Optimization Operations Research, Mathematical Programming Operations Research/Decision Theory Mathematik Variationsungleichung Asymptotik Nichtlineare Optimierung |
url | https://doi.org/10.1007/b97594 |
work_keys_str_mv | AT auslenderalfred asymptoticconesandfunctionsinoptimizationandvariationalinequalities AT teboullemarc asymptoticconesandfunctionsinoptimizationandvariationalinequalities |