Topological Methods in Hydrodynamics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1998
|
Schriftenreihe: | Applied Mathematical Sciences
125 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | ... ad alcuno, dico, di quelli, che troppo laconicamente vorrebbero vedere, nei più angusti spazii che possibil fusse, ristretti i filosofici insegnamenti, sí che sempre si usasse quella rigida e concisa maniera, spogliata di qualsivoglia vaghezza ed ornamento, che é propria dei puri geometri, li quali né pure una parola proferiscono che dalla assoluta necessitá non sia loro suggerita. Ma io, all'incontro, non ascrivo a difetto in un trattato, ancorché indirizzato ad un solo scopo, interserire altre varie notizie, purche non siano totalmente separate e senza veruna coerenza annesse al principale instituto. Galileo Galilei "Lettera al Principe Leopoldo di Toscana" (1623) Hydrodynamics is one of those fundamental areas in mathematics where progress at any moment may be regarded as a standard to measure the real success of mathematical science. Many important achievements in this field are based on profound theories rather than on experiments. In turn, those hydrodynamical theories stimulated developments in the domains of pure mathematics, such as complex analysis, topology, stability theory, bifurcation theory, and completely integrable dynamical systems. In spite of all this acknowledged success, hydrodynamics with its spectacular empirical laws remains a challenge for mathematicians. For instance, the phenomenon of turbulence has not yet acquired a rigorous mathematical theory. Furthermore, the existence problems for the smooth solutions of hydrodynamic equations of a three-dimensional fluid are still open |
Beschreibung: | 1 Online-Ressource (XV, 376 p) |
ISBN: | 9780387225890 9780387949475 |
DOI: | 10.1007/b97593 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042419036 | ||
003 | DE-604 | ||
005 | 20200707 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1998 |||| o||u| ||||||eng d | ||
020 | |a 9780387225890 |c Online |9 978-0-387-22589-0 | ||
020 | |a 9780387949475 |c Print |9 978-0-387-94947-5 | ||
024 | 7 | |a 10.1007/b97593 |2 doi | |
035 | |a (OCoLC)704424468 | ||
035 | |a (DE-599)BVBBV042419036 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Arnold, Vladimir I. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Topological Methods in Hydrodynamics |c by Vladimir I. Arnold, Boris A. Khesin |
264 | 1 | |a New York, NY |b Springer New York |c 1998 | |
300 | |a 1 Online-Ressource (XV, 376 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Applied Mathematical Sciences |v 125 | |
500 | |a ... ad alcuno, dico, di quelli, che troppo laconicamente vorrebbero vedere, nei più angusti spazii che possibil fusse, ristretti i filosofici insegnamenti, sí che sempre si usasse quella rigida e concisa maniera, spogliata di qualsivoglia vaghezza ed ornamento, che é propria dei puri geometri, li quali né pure una parola proferiscono che dalla assoluta necessitá non sia loro suggerita. Ma io, all'incontro, non ascrivo a difetto in un trattato, ancorché indirizzato ad un solo scopo, interserire altre varie notizie, purche non siano totalmente separate e senza veruna coerenza annesse al principale instituto. Galileo Galilei "Lettera al Principe Leopoldo di Toscana" (1623) Hydrodynamics is one of those fundamental areas in mathematics where progress at any moment may be regarded as a standard to measure the real success of mathematical science. Many important achievements in this field are based on profound theories rather than on experiments. In turn, those hydrodynamical theories stimulated developments in the domains of pure mathematics, such as complex analysis, topology, stability theory, bifurcation theory, and completely integrable dynamical systems. In spite of all this acknowledged success, hydrodynamics with its spectacular empirical laws remains a challenge for mathematicians. For instance, the phenomenon of turbulence has not yet acquired a rigorous mathematical theory. Furthermore, the existence problems for the smooth solutions of hydrodynamic equations of a three-dimensional fluid are still open | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Physics | |
650 | 4 | |a Fluids | |
650 | 4 | |a Engineering | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Complexity | |
650 | 4 | |a Numerical and Computational Methods in Engineering | |
650 | 4 | |a Ingenieurwissenschaften | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Hydrodynamik |0 (DE-588)4026302-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologie |0 (DE-588)4060425-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologische Methode |0 (DE-588)4312758-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hydrodynamik |0 (DE-588)4026302-2 |D s |
689 | 0 | 1 | |a Topologie |0 (DE-588)4060425-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Hydrodynamik |0 (DE-588)4026302-2 |D s |
689 | 1 | 1 | |a Topologische Methode |0 (DE-588)4312758-7 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Khesin, Boris A. |e Sonstige |4 oth | |
830 | 0 | |a Applied Mathematical Sciences |v 125 |w (DE-604)BV040244599 |9 125 | |
856 | 4 | 0 | |u https://doi.org/10.1007/b97593 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854453 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153089215692800 |
---|---|
any_adam_object | |
author | Arnold, Vladimir I. |
author_facet | Arnold, Vladimir I. |
author_role | aut |
author_sort | Arnold, Vladimir I. |
author_variant | v i a vi via |
building | Verbundindex |
bvnumber | BV042419036 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)704424468 (DE-599)BVBBV042419036 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/b97593 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03742nmm a2200625zcb4500</leader><controlfield tag="001">BV042419036</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200707 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1998 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387225890</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-387-22589-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387949475</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-94947-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/b97593</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)704424468</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419036</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Arnold, Vladimir I.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Topological Methods in Hydrodynamics</subfield><subfield code="c">by Vladimir I. Arnold, Boris A. Khesin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 376 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Applied Mathematical Sciences</subfield><subfield code="v">125</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">... ad alcuno, dico, di quelli, che troppo laconicamente vorrebbero vedere, nei più angusti spazii che possibil fusse, ristretti i filosofici insegnamenti, sí che sempre si usasse quella rigida e concisa maniera, spogliata di qualsivoglia vaghezza ed ornamento, che é propria dei puri geometri, li quali né pure una parola proferiscono che dalla assoluta necessitá non sia loro suggerita. Ma io, all'incontro, non ascrivo a difetto in un trattato, ancorché indirizzato ad un solo scopo, interserire altre varie notizie, purche non siano totalmente separate e senza veruna coerenza annesse al principale instituto. Galileo Galilei "Lettera al Principe Leopoldo di Toscana" (1623) Hydrodynamics is one of those fundamental areas in mathematics where progress at any moment may be regarded as a standard to measure the real success of mathematical science. Many important achievements in this field are based on profound theories rather than on experiments. In turn, those hydrodynamical theories stimulated developments in the domains of pure mathematics, such as complex analysis, topology, stability theory, bifurcation theory, and completely integrable dynamical systems. In spite of all this acknowledged success, hydrodynamics with its spectacular empirical laws remains a challenge for mathematicians. For instance, the phenomenon of turbulence has not yet acquired a rigorous mathematical theory. Furthermore, the existence problems for the smooth solutions of hydrodynamic equations of a three-dimensional fluid are still open</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical and Computational Methods in Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingenieurwissenschaften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hydrodynamik</subfield><subfield code="0">(DE-588)4026302-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologische Methode</subfield><subfield code="0">(DE-588)4312758-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hydrodynamik</subfield><subfield code="0">(DE-588)4026302-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Hydrodynamik</subfield><subfield code="0">(DE-588)4026302-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Topologische Methode</subfield><subfield code="0">(DE-588)4312758-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khesin, Boris A.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Applied Mathematical Sciences</subfield><subfield code="v">125</subfield><subfield code="w">(DE-604)BV040244599</subfield><subfield code="9">125</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/b97593</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854453</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419036 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:03Z |
institution | BVB |
isbn | 9780387225890 9780387949475 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854453 |
oclc_num | 704424468 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XV, 376 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Springer New York |
record_format | marc |
series | Applied Mathematical Sciences |
series2 | Applied Mathematical Sciences |
spelling | Arnold, Vladimir I. Verfasser aut Topological Methods in Hydrodynamics by Vladimir I. Arnold, Boris A. Khesin New York, NY Springer New York 1998 1 Online-Ressource (XV, 376 p) txt rdacontent c rdamedia cr rdacarrier Applied Mathematical Sciences 125 ... ad alcuno, dico, di quelli, che troppo laconicamente vorrebbero vedere, nei più angusti spazii che possibil fusse, ristretti i filosofici insegnamenti, sí che sempre si usasse quella rigida e concisa maniera, spogliata di qualsivoglia vaghezza ed ornamento, che é propria dei puri geometri, li quali né pure una parola proferiscono che dalla assoluta necessitá non sia loro suggerita. Ma io, all'incontro, non ascrivo a difetto in un trattato, ancorché indirizzato ad un solo scopo, interserire altre varie notizie, purche non siano totalmente separate e senza veruna coerenza annesse al principale instituto. Galileo Galilei "Lettera al Principe Leopoldo di Toscana" (1623) Hydrodynamics is one of those fundamental areas in mathematics where progress at any moment may be regarded as a standard to measure the real success of mathematical science. Many important achievements in this field are based on profound theories rather than on experiments. In turn, those hydrodynamical theories stimulated developments in the domains of pure mathematics, such as complex analysis, topology, stability theory, bifurcation theory, and completely integrable dynamical systems. In spite of all this acknowledged success, hydrodynamics with its spectacular empirical laws remains a challenge for mathematicians. For instance, the phenomenon of turbulence has not yet acquired a rigorous mathematical theory. Furthermore, the existence problems for the smooth solutions of hydrodynamic equations of a three-dimensional fluid are still open Mathematics Physics Fluids Engineering Mathematics, general Complexity Numerical and Computational Methods in Engineering Ingenieurwissenschaften Mathematik Hydrodynamik (DE-588)4026302-2 gnd rswk-swf Topologie (DE-588)4060425-1 gnd rswk-swf Topologische Methode (DE-588)4312758-7 gnd rswk-swf Hydrodynamik (DE-588)4026302-2 s Topologie (DE-588)4060425-1 s 1\p DE-604 Topologische Methode (DE-588)4312758-7 s 2\p DE-604 Khesin, Boris A. Sonstige oth Applied Mathematical Sciences 125 (DE-604)BV040244599 125 https://doi.org/10.1007/b97593 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Arnold, Vladimir I. Topological Methods in Hydrodynamics Applied Mathematical Sciences Mathematics Physics Fluids Engineering Mathematics, general Complexity Numerical and Computational Methods in Engineering Ingenieurwissenschaften Mathematik Hydrodynamik (DE-588)4026302-2 gnd Topologie (DE-588)4060425-1 gnd Topologische Methode (DE-588)4312758-7 gnd |
subject_GND | (DE-588)4026302-2 (DE-588)4060425-1 (DE-588)4312758-7 |
title | Topological Methods in Hydrodynamics |
title_auth | Topological Methods in Hydrodynamics |
title_exact_search | Topological Methods in Hydrodynamics |
title_full | Topological Methods in Hydrodynamics by Vladimir I. Arnold, Boris A. Khesin |
title_fullStr | Topological Methods in Hydrodynamics by Vladimir I. Arnold, Boris A. Khesin |
title_full_unstemmed | Topological Methods in Hydrodynamics by Vladimir I. Arnold, Boris A. Khesin |
title_short | Topological Methods in Hydrodynamics |
title_sort | topological methods in hydrodynamics |
topic | Mathematics Physics Fluids Engineering Mathematics, general Complexity Numerical and Computational Methods in Engineering Ingenieurwissenschaften Mathematik Hydrodynamik (DE-588)4026302-2 gnd Topologie (DE-588)4060425-1 gnd Topologische Methode (DE-588)4312758-7 gnd |
topic_facet | Mathematics Physics Fluids Engineering Mathematics, general Complexity Numerical and Computational Methods in Engineering Ingenieurwissenschaften Mathematik Hydrodynamik Topologie Topologische Methode |
url | https://doi.org/10.1007/b97593 |
volume_link | (DE-604)BV040244599 |
work_keys_str_mv | AT arnoldvladimiri topologicalmethodsinhydrodynamics AT khesinborisa topologicalmethodsinhydrodynamics |