Stochastic Approximation and Recursive Algorithms and Applications:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
2003
|
Ausgabe: | Second Edition |
Schriftenreihe: | Stochastic Modelling and Applied Probability
35 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This revised and expanded second edition presents a thorough development of the modern theory of stochastic approximation or recursive stochastic algorithms for both constrained and unconstrained problems. There is a complete development of both probability one and weak convergence methods for very general noise processes. The proofs of convergence use the ODE method, the most powerful to date. The assumptions and proof methods are designed to cover the needs of recent applications. The development proceeds from simple to complex problems, allowing the underlying ideas to be more easily understood. Rate of convergence, iterate averaging, high-dimensional problems, stability-ODE methods, two time scale, asynchronous and decentralized algorithms, state-dependent noise, stability methods for correlated noise, perturbed test function methods, and large deviations methods are covered. Many motivating examples from learning theory, ergodic cost problems for discrete event systems, wireless communications, adaptive control, signal processing, and elsewhere illustrate the applications of the theory |
Beschreibung: | 1 Online-Ressource (XXII, 478 p) |
ISBN: | 9780387217697 9780387008943 |
ISSN: | 0172-4568 |
DOI: | 10.1007/b97441 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042418987 | ||
003 | DE-604 | ||
005 | 20230217 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2003 |||| o||u| ||||||eng d | ||
020 | |a 9780387217697 |c Online |9 978-0-387-21769-7 | ||
020 | |a 9780387008943 |c Print |9 978-0-387-00894-3 | ||
024 | 7 | |a 10.1007/b97441 |2 doi | |
035 | |a (OCoLC)1165539982 | ||
035 | |a (DE-599)BVBBV042418987 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
084 | |a 93E10 |2 msc | ||
084 | |a 62L20 |2 msc | ||
084 | |a 93E25 |2 msc | ||
100 | 1 | |a Kushner, Harold J. |d 1933- |0 (DE-588)11559163X |4 aut | |
245 | 1 | 0 | |a Stochastic Approximation and Recursive Algorithms and Applications |c by Harold J. Kushner, G. George Yin |
250 | |a Second Edition | ||
264 | 1 | |a New York, NY |b Springer New York |c 2003 | |
300 | |a 1 Online-Ressource (XXII, 478 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Stochastic Modelling and Applied Probability |v 35 |x 0172-4568 | |
500 | |a This revised and expanded second edition presents a thorough development of the modern theory of stochastic approximation or recursive stochastic algorithms for both constrained and unconstrained problems. There is a complete development of both probability one and weak convergence methods for very general noise processes. The proofs of convergence use the ODE method, the most powerful to date. The assumptions and proof methods are designed to cover the needs of recent applications. The development proceeds from simple to complex problems, allowing the underlying ideas to be more easily understood. Rate of convergence, iterate averaging, high-dimensional problems, stability-ODE methods, two time scale, asynchronous and decentralized algorithms, state-dependent noise, stability methods for correlated noise, perturbed test function methods, and large deviations methods are covered. Many motivating examples from learning theory, ergodic cost problems for discrete event systems, wireless communications, adaptive control, signal processing, and elsewhere illustrate the applications of the theory | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Algorithms | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Approximations and Expansions | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Stochastische Approximation |0 (DE-588)4183371-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Rekursiver Algorithmus |0 (DE-588)4502357-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Rekursiver Algorithmus |0 (DE-588)4502357-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Stochastische Approximation |0 (DE-588)4183371-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Yin, George |d 1954- |0 (DE-588)115596798 |4 aut | |
856 | 4 | 0 | |u https://doi.org/10.1007/b97441 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854404 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153089102446592 |
---|---|
any_adam_object | |
author | Kushner, Harold J. 1933- Yin, George 1954- |
author_GND | (DE-588)11559163X (DE-588)115596798 |
author_facet | Kushner, Harold J. 1933- Yin, George 1954- |
author_role | aut aut |
author_sort | Kushner, Harold J. 1933- |
author_variant | h j k hj hjk g y gy |
building | Verbundindex |
bvnumber | BV042418987 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165539982 (DE-599)BVBBV042418987 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/b97441 |
edition | Second Edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03284nmm a2200601zcb4500</leader><controlfield tag="001">BV042418987</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230217 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387217697</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-387-21769-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387008943</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-00894-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/b97441</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165539982</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042418987</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">93E10</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">62L20</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">93E25</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kushner, Harold J.</subfield><subfield code="d">1933-</subfield><subfield code="0">(DE-588)11559163X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stochastic Approximation and Recursive Algorithms and Applications</subfield><subfield code="c">by Harold J. Kushner, G. George Yin</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXII, 478 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Stochastic Modelling and Applied Probability</subfield><subfield code="v">35</subfield><subfield code="x">0172-4568</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This revised and expanded second edition presents a thorough development of the modern theory of stochastic approximation or recursive stochastic algorithms for both constrained and unconstrained problems. There is a complete development of both probability one and weak convergence methods for very general noise processes. The proofs of convergence use the ODE method, the most powerful to date. The assumptions and proof methods are designed to cover the needs of recent applications. The development proceeds from simple to complex problems, allowing the underlying ideas to be more easily understood. Rate of convergence, iterate averaging, high-dimensional problems, stability-ODE methods, two time scale, asynchronous and decentralized algorithms, state-dependent noise, stability methods for correlated noise, perturbed test function methods, and large deviations methods are covered. Many motivating examples from learning theory, ergodic cost problems for discrete event systems, wireless communications, adaptive control, signal processing, and elsewhere illustrate the applications of the theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximations and Expansions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische Approximation</subfield><subfield code="0">(DE-588)4183371-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Rekursiver Algorithmus</subfield><subfield code="0">(DE-588)4502357-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Rekursiver Algorithmus</subfield><subfield code="0">(DE-588)4502357-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Stochastische Approximation</subfield><subfield code="0">(DE-588)4183371-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yin, George</subfield><subfield code="d">1954-</subfield><subfield code="0">(DE-588)115596798</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/b97441</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854404</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042418987 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:03Z |
institution | BVB |
isbn | 9780387217697 9780387008943 |
issn | 0172-4568 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854404 |
oclc_num | 1165539982 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XXII, 478 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Springer New York |
record_format | marc |
series2 | Stochastic Modelling and Applied Probability |
spelling | Kushner, Harold J. 1933- (DE-588)11559163X aut Stochastic Approximation and Recursive Algorithms and Applications by Harold J. Kushner, G. George Yin Second Edition New York, NY Springer New York 2003 1 Online-Ressource (XXII, 478 p) txt rdacontent c rdamedia cr rdacarrier Stochastic Modelling and Applied Probability 35 0172-4568 This revised and expanded second edition presents a thorough development of the modern theory of stochastic approximation or recursive stochastic algorithms for both constrained and unconstrained problems. There is a complete development of both probability one and weak convergence methods for very general noise processes. The proofs of convergence use the ODE method, the most powerful to date. The assumptions and proof methods are designed to cover the needs of recent applications. The development proceeds from simple to complex problems, allowing the underlying ideas to be more easily understood. Rate of convergence, iterate averaging, high-dimensional problems, stability-ODE methods, two time scale, asynchronous and decentralized algorithms, state-dependent noise, stability methods for correlated noise, perturbed test function methods, and large deviations methods are covered. Many motivating examples from learning theory, ergodic cost problems for discrete event systems, wireless communications, adaptive control, signal processing, and elsewhere illustrate the applications of the theory Mathematics Algorithms Distribution (Probability theory) Probability Theory and Stochastic Processes Approximations and Expansions Applications of Mathematics Mathematik Stochastische Approximation (DE-588)4183371-5 gnd rswk-swf Rekursiver Algorithmus (DE-588)4502357-8 gnd rswk-swf Rekursiver Algorithmus (DE-588)4502357-8 s 1\p DE-604 Stochastische Approximation (DE-588)4183371-5 s 2\p DE-604 Yin, George 1954- (DE-588)115596798 aut https://doi.org/10.1007/b97441 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kushner, Harold J. 1933- Yin, George 1954- Stochastic Approximation and Recursive Algorithms and Applications Mathematics Algorithms Distribution (Probability theory) Probability Theory and Stochastic Processes Approximations and Expansions Applications of Mathematics Mathematik Stochastische Approximation (DE-588)4183371-5 gnd Rekursiver Algorithmus (DE-588)4502357-8 gnd |
subject_GND | (DE-588)4183371-5 (DE-588)4502357-8 |
title | Stochastic Approximation and Recursive Algorithms and Applications |
title_auth | Stochastic Approximation and Recursive Algorithms and Applications |
title_exact_search | Stochastic Approximation and Recursive Algorithms and Applications |
title_full | Stochastic Approximation and Recursive Algorithms and Applications by Harold J. Kushner, G. George Yin |
title_fullStr | Stochastic Approximation and Recursive Algorithms and Applications by Harold J. Kushner, G. George Yin |
title_full_unstemmed | Stochastic Approximation and Recursive Algorithms and Applications by Harold J. Kushner, G. George Yin |
title_short | Stochastic Approximation and Recursive Algorithms and Applications |
title_sort | stochastic approximation and recursive algorithms and applications |
topic | Mathematics Algorithms Distribution (Probability theory) Probability Theory and Stochastic Processes Approximations and Expansions Applications of Mathematics Mathematik Stochastische Approximation (DE-588)4183371-5 gnd Rekursiver Algorithmus (DE-588)4502357-8 gnd |
topic_facet | Mathematics Algorithms Distribution (Probability theory) Probability Theory and Stochastic Processes Approximations and Expansions Applications of Mathematics Mathematik Stochastische Approximation Rekursiver Algorithmus |
url | https://doi.org/10.1007/b97441 |
work_keys_str_mv | AT kushnerharoldj stochasticapproximationandrecursivealgorithmsandapplications AT yingeorge stochasticapproximationandrecursivealgorithmsandapplications |