The Theory of Finite Groups: An Introduction
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
2004
|
Schriftenreihe: | Universitext
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | From reviews of the German Edition: "This is an exciting text and a refreshing contribution to an area in which challenges continue to flourish and to captivate the viewer. Even though representation theory and constructions of simple groups have been omitted, the text serves as a springboard for deeper study in many directions. One who completes this text not only gains an appreciation of both the depth and the breadth of the theory of finite groups, but also witnesses the evolutionary development of concepts that form a basis for current investigations. This is accomplished by providing a thread that permits a natural flow from one concept to another rather than compartmentalizing. Operators on sets and groups are introduced early and used effectively throughout. The bibliography provides excellent supplemental support." H. Bechtell, Mathematical Reviews "Altogether, we have a well written book, which gives an introduction into the field and furthermore shows us one of the most active recent areas of research. This is the first book which shows us the amalgam method and moreover shows us how it works. Maybe it can get the same influence on group theory today as Gorenstein's famous book got in the late sixtees and seventees. This book should be in any library." G. Stroth, Zentralblatt |
Beschreibung: | 1 Online-Ressource (XII, 388 p) |
ISBN: | 9780387217680 9781441923400 |
ISSN: | 0172-5939 |
DOI: | 10.1007/b97433 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042418986 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2004 |||| o||u| ||||||eng d | ||
020 | |a 9780387217680 |c Online |9 978-0-387-21768-0 | ||
020 | |a 9781441923400 |c Print |9 978-1-4419-2340-0 | ||
024 | 7 | |a 10.1007/b97433 |2 doi | |
035 | |a (OCoLC)315470375 | ||
035 | |a (DE-599)BVBBV042418986 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Kurzweil, Hans |e Verfasser |4 aut | |
245 | 1 | 0 | |a The Theory of Finite Groups |b An Introduction |c by Hans Kurzweil, Bernd Stellmacher |
264 | 1 | |a New York, NY |b Springer New York |c 2004 | |
300 | |a 1 Online-Ressource (XII, 388 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Universitext |x 0172-5939 | |
500 | |a From reviews of the German Edition: "This is an exciting text and a refreshing contribution to an area in which challenges continue to flourish and to captivate the viewer. Even though representation theory and constructions of simple groups have been omitted, the text serves as a springboard for deeper study in many directions. One who completes this text not only gains an appreciation of both the depth and the breadth of the theory of finite groups, but also witnesses the evolutionary development of concepts that form a basis for current investigations. This is accomplished by providing a thread that permits a natural flow from one concept to another rather than compartmentalizing. Operators on sets and groups are introduced early and used effectively throughout. The bibliography provides excellent supplemental support." H. Bechtell, Mathematical Reviews "Altogether, we have a well written book, which gives an introduction into the field and furthermore shows us one of the most active recent areas of research. This is the first book which shows us the amalgam method and moreover shows us how it works. Maybe it can get the same influence on group theory today as Gorenstein's famous book got in the late sixtees and seventees. This book should be in any library." G. Stroth, Zentralblatt | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Group theory | |
650 | 4 | |a Group Theory and Generalizations | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Endliche Gruppe |0 (DE-588)4014651-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gruppentheorie |0 (DE-588)4072157-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a p-Gruppe |0 (DE-588)4174108-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Gruppentheorie |0 (DE-588)4072157-7 |D s |
689 | 0 | 1 | |a Endliche Gruppe |0 (DE-588)4014651-0 |D s |
689 | 0 | 2 | |a p-Gruppe |0 (DE-588)4174108-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Stellmacher, Bernd |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/b97433 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854403 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153089100349440 |
---|---|
any_adam_object | |
author | Kurzweil, Hans |
author_facet | Kurzweil, Hans |
author_role | aut |
author_sort | Kurzweil, Hans |
author_variant | h k hk |
building | Verbundindex |
bvnumber | BV042418986 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)315470375 (DE-599)BVBBV042418986 |
dewey-full | 512.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.2 |
dewey-search | 512.2 |
dewey-sort | 3512.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/b97433 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03090nmm a2200517zc 4500</leader><controlfield tag="001">BV042418986</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387217680</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-387-21768-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441923400</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4419-2340-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/b97433</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)315470375</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042418986</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kurzweil, Hans</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Theory of Finite Groups</subfield><subfield code="b">An Introduction</subfield><subfield code="c">by Hans Kurzweil, Bernd Stellmacher</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 388 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield><subfield code="x">0172-5939</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">From reviews of the German Edition: "This is an exciting text and a refreshing contribution to an area in which challenges continue to flourish and to captivate the viewer. Even though representation theory and constructions of simple groups have been omitted, the text serves as a springboard for deeper study in many directions. One who completes this text not only gains an appreciation of both the depth and the breadth of the theory of finite groups, but also witnesses the evolutionary development of concepts that form a basis for current investigations. This is accomplished by providing a thread that permits a natural flow from one concept to another rather than compartmentalizing. Operators on sets and groups are introduced early and used effectively throughout. The bibliography provides excellent supplemental support." H. Bechtell, Mathematical Reviews "Altogether, we have a well written book, which gives an introduction into the field and furthermore shows us one of the most active recent areas of research. This is the first book which shows us the amalgam method and moreover shows us how it works. Maybe it can get the same influence on group theory today as Gorenstein's famous book got in the late sixtees and seventees. This book should be in any library." G. Stroth, Zentralblatt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group Theory and Generalizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Endliche Gruppe</subfield><subfield code="0">(DE-588)4014651-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">p-Gruppe</subfield><subfield code="0">(DE-588)4174108-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Endliche Gruppe</subfield><subfield code="0">(DE-588)4014651-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">p-Gruppe</subfield><subfield code="0">(DE-588)4174108-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stellmacher, Bernd</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/b97433</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854403</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042418986 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:03Z |
institution | BVB |
isbn | 9780387217680 9781441923400 |
issn | 0172-5939 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854403 |
oclc_num | 315470375 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 388 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Springer New York |
record_format | marc |
series2 | Universitext |
spelling | Kurzweil, Hans Verfasser aut The Theory of Finite Groups An Introduction by Hans Kurzweil, Bernd Stellmacher New York, NY Springer New York 2004 1 Online-Ressource (XII, 388 p) txt rdacontent c rdamedia cr rdacarrier Universitext 0172-5939 From reviews of the German Edition: "This is an exciting text and a refreshing contribution to an area in which challenges continue to flourish and to captivate the viewer. Even though representation theory and constructions of simple groups have been omitted, the text serves as a springboard for deeper study in many directions. One who completes this text not only gains an appreciation of both the depth and the breadth of the theory of finite groups, but also witnesses the evolutionary development of concepts that form a basis for current investigations. This is accomplished by providing a thread that permits a natural flow from one concept to another rather than compartmentalizing. Operators on sets and groups are introduced early and used effectively throughout. The bibliography provides excellent supplemental support." H. Bechtell, Mathematical Reviews "Altogether, we have a well written book, which gives an introduction into the field and furthermore shows us one of the most active recent areas of research. This is the first book which shows us the amalgam method and moreover shows us how it works. Maybe it can get the same influence on group theory today as Gorenstein's famous book got in the late sixtees and seventees. This book should be in any library." G. Stroth, Zentralblatt Mathematics Group theory Group Theory and Generalizations Mathematik Endliche Gruppe (DE-588)4014651-0 gnd rswk-swf Gruppentheorie (DE-588)4072157-7 gnd rswk-swf p-Gruppe (DE-588)4174108-0 gnd rswk-swf Gruppentheorie (DE-588)4072157-7 s Endliche Gruppe (DE-588)4014651-0 s p-Gruppe (DE-588)4174108-0 s 1\p DE-604 Stellmacher, Bernd Sonstige oth https://doi.org/10.1007/b97433 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kurzweil, Hans The Theory of Finite Groups An Introduction Mathematics Group theory Group Theory and Generalizations Mathematik Endliche Gruppe (DE-588)4014651-0 gnd Gruppentheorie (DE-588)4072157-7 gnd p-Gruppe (DE-588)4174108-0 gnd |
subject_GND | (DE-588)4014651-0 (DE-588)4072157-7 (DE-588)4174108-0 |
title | The Theory of Finite Groups An Introduction |
title_auth | The Theory of Finite Groups An Introduction |
title_exact_search | The Theory of Finite Groups An Introduction |
title_full | The Theory of Finite Groups An Introduction by Hans Kurzweil, Bernd Stellmacher |
title_fullStr | The Theory of Finite Groups An Introduction by Hans Kurzweil, Bernd Stellmacher |
title_full_unstemmed | The Theory of Finite Groups An Introduction by Hans Kurzweil, Bernd Stellmacher |
title_short | The Theory of Finite Groups |
title_sort | the theory of finite groups an introduction |
title_sub | An Introduction |
topic | Mathematics Group theory Group Theory and Generalizations Mathematik Endliche Gruppe (DE-588)4014651-0 gnd Gruppentheorie (DE-588)4072157-7 gnd p-Gruppe (DE-588)4174108-0 gnd |
topic_facet | Mathematics Group theory Group Theory and Generalizations Mathematik Endliche Gruppe Gruppentheorie p-Gruppe |
url | https://doi.org/10.1007/b97433 |
work_keys_str_mv | AT kurzweilhans thetheoryoffinitegroupsanintroduction AT stellmacherbernd thetheoryoffinitegroupsanintroduction |