Introduction to Smooth Manifolds:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
2003
|
Schriftenreihe: | Graduate Texts in Mathematics
218 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Manifolds are everywhere. These generalizations of curves and surfaces to arbitrarily many dimensions provide the mathematical context for under standing "space" in all of its manifestations. Today, the tools of manifold theory are indispensable in most major subfields of pure mathematics, and outside of pure mathematics they are becoming increasingly important to scientists in such diverse fields as genetics, robotics, econometrics, com puter graphics, biomedical imaging, and, of course, the undisputed leader among consumers (and inspirers) of mathematics-theoretical physics. No longer a specialized subject that is studied only by differential geometers, manifold theory is now one of the basic skills that all mathematics students should acquire as early as possible. Over the past few centuries, mathematicians have developed a wondrous collection of conceptual machines designed to enable us to peer ever more deeply into the invisible world of geometry in higher dimensions. Once their operation is mastered, these powerful machines enable us to think geometrically about the 6-dimensional zero set of a polynomial in four complex variables, or the lO-dimensional manifold of 5 x 5 orthogonal ma trices, as easily as we think about the familiar 2-dimensional sphere in ]R3 |
Beschreibung: | 1 Online-Ressource (XVII, 631 p) |
ISBN: | 9780387217529 9780387954486 |
ISSN: | 0072-5285 |
DOI: | 10.1007/978-0-387-21752-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042418980 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2003 |||| o||u| ||||||eng d | ||
020 | |a 9780387217529 |c Online |9 978-0-387-21752-9 | ||
020 | |a 9780387954486 |c Print |9 978-0-387-95448-6 | ||
024 | 7 | |a 10.1007/978-0-387-21752-9 |2 doi | |
035 | |a (OCoLC)863929654 | ||
035 | |a (DE-599)BVBBV042418980 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 514.34 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Lee, John M. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Introduction to Smooth Manifolds |c by John M. Lee |
264 | 1 | |a New York, NY |b Springer New York |c 2003 | |
300 | |a 1 Online-Ressource (XVII, 631 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Graduate Texts in Mathematics |v 218 |x 0072-5285 | |
500 | |a Manifolds are everywhere. These generalizations of curves and surfaces to arbitrarily many dimensions provide the mathematical context for under standing "space" in all of its manifestations. Today, the tools of manifold theory are indispensable in most major subfields of pure mathematics, and outside of pure mathematics they are becoming increasingly important to scientists in such diverse fields as genetics, robotics, econometrics, com puter graphics, biomedical imaging, and, of course, the undisputed leader among consumers (and inspirers) of mathematics-theoretical physics. No longer a specialized subject that is studied only by differential geometers, manifold theory is now one of the basic skills that all mathematics students should acquire as early as possible. Over the past few centuries, mathematicians have developed a wondrous collection of conceptual machines designed to enable us to peer ever more deeply into the invisible world of geometry in higher dimensions. Once their operation is mastered, these powerful machines enable us to think geometrically about the 6-dimensional zero set of a polynomial in four complex variables, or the lO-dimensional manifold of 5 x 5 orthogonal ma trices, as easily as we think about the familiar 2-dimensional sphere in ]R3 | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global differential geometry | |
650 | 4 | |a Cell aggregation / Mathematics | |
650 | 4 | |a Manifolds and Cell Complexes (incl. Diff.Topology) | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Glatte Mannigfaltigkeit |0 (DE-588)4157471-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Glatte Fläche |0 (DE-588)4157467-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Glatte Kurve |0 (DE-588)4157470-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Glatte Mannigfaltigkeit |0 (DE-588)4157471-0 |D s |
689 | 0 | 1 | |a Glatte Kurve |0 (DE-588)4157470-9 |D s |
689 | 0 | 2 | |a Glatte Fläche |0 (DE-588)4157467-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-0-387-21752-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854397 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153089082523648 |
---|---|
any_adam_object | |
author | Lee, John M. |
author_facet | Lee, John M. |
author_role | aut |
author_sort | Lee, John M. |
author_variant | j m l jm jml |
building | Verbundindex |
bvnumber | BV042418980 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863929654 (DE-599)BVBBV042418980 |
dewey-full | 514.34 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.34 |
dewey-search | 514.34 |
dewey-sort | 3514.34 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-0-387-21752-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03175nmm a2200529zcb4500</leader><controlfield tag="001">BV042418980</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387217529</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-387-21752-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387954486</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-95448-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-0-387-21752-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863929654</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042418980</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.34</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lee, John M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to Smooth Manifolds</subfield><subfield code="c">by John M. Lee</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVII, 631 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Graduate Texts in Mathematics</subfield><subfield code="v">218</subfield><subfield code="x">0072-5285</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Manifolds are everywhere. These generalizations of curves and surfaces to arbitrarily many dimensions provide the mathematical context for under standing "space" in all of its manifestations. Today, the tools of manifold theory are indispensable in most major subfields of pure mathematics, and outside of pure mathematics they are becoming increasingly important to scientists in such diverse fields as genetics, robotics, econometrics, com puter graphics, biomedical imaging, and, of course, the undisputed leader among consumers (and inspirers) of mathematics-theoretical physics. No longer a specialized subject that is studied only by differential geometers, manifold theory is now one of the basic skills that all mathematics students should acquire as early as possible. Over the past few centuries, mathematicians have developed a wondrous collection of conceptual machines designed to enable us to peer ever more deeply into the invisible world of geometry in higher dimensions. Once their operation is mastered, these powerful machines enable us to think geometrically about the 6-dimensional zero set of a polynomial in four complex variables, or the lO-dimensional manifold of 5 x 5 orthogonal ma trices, as easily as we think about the familiar 2-dimensional sphere in ]R3</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell aggregation / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds and Cell Complexes (incl. Diff.Topology)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Glatte Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4157471-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Glatte Fläche</subfield><subfield code="0">(DE-588)4157467-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Glatte Kurve</subfield><subfield code="0">(DE-588)4157470-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Glatte Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4157471-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Glatte Kurve</subfield><subfield code="0">(DE-588)4157470-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Glatte Fläche</subfield><subfield code="0">(DE-588)4157467-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-0-387-21752-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854397</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042418980 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:03Z |
institution | BVB |
isbn | 9780387217529 9780387954486 |
issn | 0072-5285 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854397 |
oclc_num | 863929654 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVII, 631 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Springer New York |
record_format | marc |
series2 | Graduate Texts in Mathematics |
spelling | Lee, John M. Verfasser aut Introduction to Smooth Manifolds by John M. Lee New York, NY Springer New York 2003 1 Online-Ressource (XVII, 631 p) txt rdacontent c rdamedia cr rdacarrier Graduate Texts in Mathematics 218 0072-5285 Manifolds are everywhere. These generalizations of curves and surfaces to arbitrarily many dimensions provide the mathematical context for under standing "space" in all of its manifestations. Today, the tools of manifold theory are indispensable in most major subfields of pure mathematics, and outside of pure mathematics they are becoming increasingly important to scientists in such diverse fields as genetics, robotics, econometrics, com puter graphics, biomedical imaging, and, of course, the undisputed leader among consumers (and inspirers) of mathematics-theoretical physics. No longer a specialized subject that is studied only by differential geometers, manifold theory is now one of the basic skills that all mathematics students should acquire as early as possible. Over the past few centuries, mathematicians have developed a wondrous collection of conceptual machines designed to enable us to peer ever more deeply into the invisible world of geometry in higher dimensions. Once their operation is mastered, these powerful machines enable us to think geometrically about the 6-dimensional zero set of a polynomial in four complex variables, or the lO-dimensional manifold of 5 x 5 orthogonal ma trices, as easily as we think about the familiar 2-dimensional sphere in ]R3 Mathematics Global differential geometry Cell aggregation / Mathematics Manifolds and Cell Complexes (incl. Diff.Topology) Differential Geometry Mathematik Glatte Mannigfaltigkeit (DE-588)4157471-0 gnd rswk-swf Glatte Fläche (DE-588)4157467-9 gnd rswk-swf Glatte Kurve (DE-588)4157470-9 gnd rswk-swf Glatte Mannigfaltigkeit (DE-588)4157471-0 s Glatte Kurve (DE-588)4157470-9 s Glatte Fläche (DE-588)4157467-9 s 1\p DE-604 https://doi.org/10.1007/978-0-387-21752-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Lee, John M. Introduction to Smooth Manifolds Mathematics Global differential geometry Cell aggregation / Mathematics Manifolds and Cell Complexes (incl. Diff.Topology) Differential Geometry Mathematik Glatte Mannigfaltigkeit (DE-588)4157471-0 gnd Glatte Fläche (DE-588)4157467-9 gnd Glatte Kurve (DE-588)4157470-9 gnd |
subject_GND | (DE-588)4157471-0 (DE-588)4157467-9 (DE-588)4157470-9 |
title | Introduction to Smooth Manifolds |
title_auth | Introduction to Smooth Manifolds |
title_exact_search | Introduction to Smooth Manifolds |
title_full | Introduction to Smooth Manifolds by John M. Lee |
title_fullStr | Introduction to Smooth Manifolds by John M. Lee |
title_full_unstemmed | Introduction to Smooth Manifolds by John M. Lee |
title_short | Introduction to Smooth Manifolds |
title_sort | introduction to smooth manifolds |
topic | Mathematics Global differential geometry Cell aggregation / Mathematics Manifolds and Cell Complexes (incl. Diff.Topology) Differential Geometry Mathematik Glatte Mannigfaltigkeit (DE-588)4157471-0 gnd Glatte Fläche (DE-588)4157467-9 gnd Glatte Kurve (DE-588)4157470-9 gnd |
topic_facet | Mathematics Global differential geometry Cell aggregation / Mathematics Manifolds and Cell Complexes (incl. Diff.Topology) Differential Geometry Mathematik Glatte Mannigfaltigkeit Glatte Fläche Glatte Kurve |
url | https://doi.org/10.1007/978-0-387-21752-9 |
work_keys_str_mv | AT leejohnm introductiontosmoothmanifolds |