Introduction to Applied Nonlinear Dynamical Systems and Chaos:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
2003
|
Ausgabe: | Second Edition |
Schriftenreihe: | Texts in Applied Mathematics
2 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This volume is intended for advanced undergraduate or first-year graduate students as an introduction to applied nonlinear dynamics and chaos. The author has placed emphasis on teaching the techniques and ideas that will enable students to take specific dynamical systems and obtain some quantitative information about the behavior of these systems. He has included the basic core material that is necessary for higher levels of study and research. Thus, people who do not necessarily have an extensive mathematical background, such as students in engineering, physics, chemistry, and biology, will find this text as useful as students of mathematics. This new edition contains extensive new material on invariant manifold theory and normal forms (in particular, Hamiltonian normal forms and the role of symmetry). Lagrangian, Hamiltonian, gradient, and reversible dynamical systems are also discussed. Elementary Hamiltonian bifurcations are covered, as well as the basic properties of circle maps. The book contains an extensive bibliography as well as a detailed glossary of terms, making it a comprehensive book on applied nonlinear dynamical systems from a geometrical and analytical point of view |
Beschreibung: | 1 Online-Ressource (XXXVIII, 844 p) |
ISBN: | 9780387217499 9780387001777 |
ISSN: | 0939-2475 |
DOI: | 10.1007/b97481 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042418977 | ||
003 | DE-604 | ||
005 | 20220422 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2003 |||| o||u| ||||||eng d | ||
020 | |a 9780387217499 |c Online |9 978-0-387-21749-9 | ||
020 | |a 9780387001777 |c Print |9 978-0-387-00177-7 | ||
024 | 7 | |a 10.1007/b97481 |2 doi | |
035 | |a (OCoLC)850798244 | ||
035 | |a (DE-599)BVBBV042418977 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 |a DE-739 | ||
082 | 0 | |a 515.39 |2 23 | |
082 | 0 | |a 515.48 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Wiggins, Stephen |d ca. 20./21. Jh. |e Verfasser |0 (DE-588)1247764664 |4 aut | |
245 | 1 | 0 | |a Introduction to Applied Nonlinear Dynamical Systems and Chaos |c by Stephen Wiggins |
250 | |a Second Edition | ||
264 | 1 | |a New York, NY |b Springer New York |c 2003 | |
300 | |a 1 Online-Ressource (XXXVIII, 844 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Texts in Applied Mathematics |v 2 |x 0939-2475 | |
500 | |a This volume is intended for advanced undergraduate or first-year graduate students as an introduction to applied nonlinear dynamics and chaos. The author has placed emphasis on teaching the techniques and ideas that will enable students to take specific dynamical systems and obtain some quantitative information about the behavior of these systems. He has included the basic core material that is necessary for higher levels of study and research. Thus, people who do not necessarily have an extensive mathematical background, such as students in engineering, physics, chemistry, and biology, will find this text as useful as students of mathematics. This new edition contains extensive new material on invariant manifold theory and normal forms (in particular, Hamiltonian normal forms and the role of symmetry). Lagrangian, Hamiltonian, gradient, and reversible dynamical systems are also discussed. Elementary Hamiltonian bifurcations are covered, as well as the basic properties of circle maps. The book contains an extensive bibliography as well as a detailed glossary of terms, making it a comprehensive book on applied nonlinear dynamical systems from a geometrical and analytical point of view | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Differentiable dynamical systems | |
650 | 4 | |a Physics | |
650 | 4 | |a Engineering mathematics | |
650 | 4 | |a Engineering | |
650 | 4 | |a Dynamical Systems and Ergodic Theory | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Complexity | |
650 | 4 | |a Appl.Mathematics/Computational Methods of Engineering | |
650 | 4 | |a Ingenieurwissenschaften | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Nichtlineares dynamisches System |0 (DE-588)4126142-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Chaostheorie |0 (DE-588)4009754-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Chaotisches System |0 (DE-588)4316104-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Chaos |0 (DE-588)4191419-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differenzierbares dynamisches System |0 (DE-588)4137931-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Theorie |0 (DE-588)4251279-7 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4143389-0 |a Aufgabensammlung |2 gnd-content | |
689 | 0 | 0 | |a Chaotisches System |0 (DE-588)4316104-2 |D s |
689 | 0 | 1 | |a Nichtlineares dynamisches System |0 (DE-588)4126142-2 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
689 | 1 | 0 | |a Nichtlineares dynamisches System |0 (DE-588)4126142-2 |D s |
689 | 1 | 1 | |a Chaostheorie |0 (DE-588)4009754-7 |D s |
689 | 1 | |8 3\p |5 DE-604 | |
689 | 2 | 0 | |a Chaos |0 (DE-588)4191419-3 |D s |
689 | 2 | |8 4\p |5 DE-604 | |
689 | 3 | 0 | |a Nichtlineare Theorie |0 (DE-588)4251279-7 |D s |
689 | 3 | |8 5\p |5 DE-604 | |
689 | 4 | 0 | |a Differenzierbares dynamisches System |0 (DE-588)4137931-7 |D s |
689 | 4 | |8 6\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/b97481 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854394 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 6\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153089078329344 |
---|---|
any_adam_object | |
author | Wiggins, Stephen ca. 20./21. Jh |
author_GND | (DE-588)1247764664 |
author_facet | Wiggins, Stephen ca. 20./21. Jh |
author_role | aut |
author_sort | Wiggins, Stephen ca. 20./21. Jh |
author_variant | s w sw |
building | Verbundindex |
bvnumber | BV042418977 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)850798244 (DE-599)BVBBV042418977 |
dewey-full | 515.39 515.48 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.39 515.48 |
dewey-search | 515.39 515.48 |
dewey-sort | 3515.39 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/b97481 |
edition | Second Edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04483nmm a2200817zcb4500</leader><controlfield tag="001">BV042418977</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220422 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387217499</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-387-21749-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387001777</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-00177-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/b97481</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)850798244</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042418977</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.39</subfield><subfield code="2">23</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.48</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wiggins, Stephen</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1247764664</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to Applied Nonlinear Dynamical Systems and Chaos</subfield><subfield code="c">by Stephen Wiggins</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXXVIII, 844 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Texts in Applied Mathematics</subfield><subfield code="v">2</subfield><subfield code="x">0939-2475</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This volume is intended for advanced undergraduate or first-year graduate students as an introduction to applied nonlinear dynamics and chaos. The author has placed emphasis on teaching the techniques and ideas that will enable students to take specific dynamical systems and obtain some quantitative information about the behavior of these systems. He has included the basic core material that is necessary for higher levels of study and research. Thus, people who do not necessarily have an extensive mathematical background, such as students in engineering, physics, chemistry, and biology, will find this text as useful as students of mathematics. This new edition contains extensive new material on invariant manifold theory and normal forms (in particular, Hamiltonian normal forms and the role of symmetry). Lagrangian, Hamiltonian, gradient, and reversible dynamical systems are also discussed. Elementary Hamiltonian bifurcations are covered, as well as the basic properties of circle maps. The book contains an extensive bibliography as well as a detailed glossary of terms, making it a comprehensive book on applied nonlinear dynamical systems from a geometrical and analytical point of view</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differentiable dynamical systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamical Systems and Ergodic Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Appl.Mathematics/Computational Methods of Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingenieurwissenschaften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineares dynamisches System</subfield><subfield code="0">(DE-588)4126142-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chaostheorie</subfield><subfield code="0">(DE-588)4009754-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chaotisches System</subfield><subfield code="0">(DE-588)4316104-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chaos</subfield><subfield code="0">(DE-588)4191419-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differenzierbares dynamisches System</subfield><subfield code="0">(DE-588)4137931-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Theorie</subfield><subfield code="0">(DE-588)4251279-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4143389-0</subfield><subfield code="a">Aufgabensammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Chaotisches System</subfield><subfield code="0">(DE-588)4316104-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nichtlineares dynamisches System</subfield><subfield code="0">(DE-588)4126142-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Nichtlineares dynamisches System</subfield><subfield code="0">(DE-588)4126142-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Chaostheorie</subfield><subfield code="0">(DE-588)4009754-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Chaos</subfield><subfield code="0">(DE-588)4191419-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Nichtlineare Theorie</subfield><subfield code="0">(DE-588)4251279-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Differenzierbares dynamisches System</subfield><subfield code="0">(DE-588)4137931-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">6\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/b97481</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854394</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">6\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4143389-0 Aufgabensammlung gnd-content |
genre_facet | Aufgabensammlung |
id | DE-604.BV042418977 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:03Z |
institution | BVB |
isbn | 9780387217499 9780387001777 |
issn | 0939-2475 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854394 |
oclc_num | 850798244 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 DE-739 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 DE-739 |
physical | 1 Online-Ressource (XXXVIII, 844 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Springer New York |
record_format | marc |
series2 | Texts in Applied Mathematics |
spelling | Wiggins, Stephen ca. 20./21. Jh. Verfasser (DE-588)1247764664 aut Introduction to Applied Nonlinear Dynamical Systems and Chaos by Stephen Wiggins Second Edition New York, NY Springer New York 2003 1 Online-Ressource (XXXVIII, 844 p) txt rdacontent c rdamedia cr rdacarrier Texts in Applied Mathematics 2 0939-2475 This volume is intended for advanced undergraduate or first-year graduate students as an introduction to applied nonlinear dynamics and chaos. The author has placed emphasis on teaching the techniques and ideas that will enable students to take specific dynamical systems and obtain some quantitative information about the behavior of these systems. He has included the basic core material that is necessary for higher levels of study and research. Thus, people who do not necessarily have an extensive mathematical background, such as students in engineering, physics, chemistry, and biology, will find this text as useful as students of mathematics. This new edition contains extensive new material on invariant manifold theory and normal forms (in particular, Hamiltonian normal forms and the role of symmetry). Lagrangian, Hamiltonian, gradient, and reversible dynamical systems are also discussed. Elementary Hamiltonian bifurcations are covered, as well as the basic properties of circle maps. The book contains an extensive bibliography as well as a detailed glossary of terms, making it a comprehensive book on applied nonlinear dynamical systems from a geometrical and analytical point of view Mathematics Differentiable dynamical systems Physics Engineering mathematics Engineering Dynamical Systems and Ergodic Theory Applications of Mathematics Complexity Appl.Mathematics/Computational Methods of Engineering Ingenieurwissenschaften Mathematik Nichtlineares dynamisches System (DE-588)4126142-2 gnd rswk-swf Chaostheorie (DE-588)4009754-7 gnd rswk-swf Chaotisches System (DE-588)4316104-2 gnd rswk-swf Chaos (DE-588)4191419-3 gnd rswk-swf Differenzierbares dynamisches System (DE-588)4137931-7 gnd rswk-swf Nichtlineare Theorie (DE-588)4251279-7 gnd rswk-swf 1\p (DE-588)4143389-0 Aufgabensammlung gnd-content Chaotisches System (DE-588)4316104-2 s Nichtlineares dynamisches System (DE-588)4126142-2 s 2\p DE-604 Chaostheorie (DE-588)4009754-7 s 3\p DE-604 Chaos (DE-588)4191419-3 s 4\p DE-604 Nichtlineare Theorie (DE-588)4251279-7 s 5\p DE-604 Differenzierbares dynamisches System (DE-588)4137931-7 s 6\p DE-604 https://doi.org/10.1007/b97481 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 6\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Wiggins, Stephen ca. 20./21. Jh Introduction to Applied Nonlinear Dynamical Systems and Chaos Mathematics Differentiable dynamical systems Physics Engineering mathematics Engineering Dynamical Systems and Ergodic Theory Applications of Mathematics Complexity Appl.Mathematics/Computational Methods of Engineering Ingenieurwissenschaften Mathematik Nichtlineares dynamisches System (DE-588)4126142-2 gnd Chaostheorie (DE-588)4009754-7 gnd Chaotisches System (DE-588)4316104-2 gnd Chaos (DE-588)4191419-3 gnd Differenzierbares dynamisches System (DE-588)4137931-7 gnd Nichtlineare Theorie (DE-588)4251279-7 gnd |
subject_GND | (DE-588)4126142-2 (DE-588)4009754-7 (DE-588)4316104-2 (DE-588)4191419-3 (DE-588)4137931-7 (DE-588)4251279-7 (DE-588)4143389-0 |
title | Introduction to Applied Nonlinear Dynamical Systems and Chaos |
title_auth | Introduction to Applied Nonlinear Dynamical Systems and Chaos |
title_exact_search | Introduction to Applied Nonlinear Dynamical Systems and Chaos |
title_full | Introduction to Applied Nonlinear Dynamical Systems and Chaos by Stephen Wiggins |
title_fullStr | Introduction to Applied Nonlinear Dynamical Systems and Chaos by Stephen Wiggins |
title_full_unstemmed | Introduction to Applied Nonlinear Dynamical Systems and Chaos by Stephen Wiggins |
title_short | Introduction to Applied Nonlinear Dynamical Systems and Chaos |
title_sort | introduction to applied nonlinear dynamical systems and chaos |
topic | Mathematics Differentiable dynamical systems Physics Engineering mathematics Engineering Dynamical Systems and Ergodic Theory Applications of Mathematics Complexity Appl.Mathematics/Computational Methods of Engineering Ingenieurwissenschaften Mathematik Nichtlineares dynamisches System (DE-588)4126142-2 gnd Chaostheorie (DE-588)4009754-7 gnd Chaotisches System (DE-588)4316104-2 gnd Chaos (DE-588)4191419-3 gnd Differenzierbares dynamisches System (DE-588)4137931-7 gnd Nichtlineare Theorie (DE-588)4251279-7 gnd |
topic_facet | Mathematics Differentiable dynamical systems Physics Engineering mathematics Engineering Dynamical Systems and Ergodic Theory Applications of Mathematics Complexity Appl.Mathematics/Computational Methods of Engineering Ingenieurwissenschaften Mathematik Nichtlineares dynamisches System Chaostheorie Chaotisches System Chaos Differenzierbares dynamisches System Nichtlineare Theorie Aufgabensammlung |
url | https://doi.org/10.1007/b97481 |
work_keys_str_mv | AT wigginsstephen introductiontoappliednonlineardynamicalsystemsandchaos |