Stochastic-Process Limits: An Introduction to Stochastic-Process Limits and Their Application to Queues
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
2002
|
Schriftenreihe: | Springer Series in Operations Research and Financial Engineering
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Stochastic Process Limits are useful and interesting because they generate simple approximations for complicated stochastic processes and also help explain the statistical regularity associated with a macroscopic view of uncertainty. This book emphasizes the continuous-mapping approach to obtain new stochastic-process limits from previously established stochastic-process limits. The continuous-mapping approach is applied to obtain heavy-traffic-stochastic-process limits for queueing models, including the case in which there are unmatched jumps in the limit process. These heavy-traffic limits generate simple approximations for complicated queueing processes and they reveal the impact of variability upon queueing performance. The book will be of interest to researchers and graduate students working in the areas of probability, stochastic processes, and operations research. In addition this book won the 2003 Lanchester Prize for the best contribution to Operation Research and Management in English, see: http://www.informs.org/Prizes/LanchesterPrize.html |
Beschreibung: | 1 Online-Ressource (XXIII, 602 p) |
ISBN: | 9780387217482 9780387953588 |
ISSN: | 1431-8598 |
DOI: | 10.1007/b97479 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042418976 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2002 |||| o||u| ||||||eng d | ||
020 | |a 9780387217482 |c Online |9 978-0-387-21748-2 | ||
020 | |a 9780387953588 |c Print |9 978-0-387-95358-8 | ||
024 | 7 | |a 10.1007/b97479 |2 doi | |
035 | |a (OCoLC)849905500 | ||
035 | |a (DE-599)BVBBV042418976 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Whitt, Ward |e Verfasser |4 aut | |
245 | 1 | 0 | |a Stochastic-Process Limits |b An Introduction to Stochastic-Process Limits and Their Application to Queues |c by Ward Whitt |
264 | 1 | |a New York, NY |b Springer New York |c 2002 | |
300 | |a 1 Online-Ressource (XXIII, 602 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Series in Operations Research and Financial Engineering |x 1431-8598 | |
500 | |a Stochastic Process Limits are useful and interesting because they generate simple approximations for complicated stochastic processes and also help explain the statistical regularity associated with a macroscopic view of uncertainty. This book emphasizes the continuous-mapping approach to obtain new stochastic-process limits from previously established stochastic-process limits. The continuous-mapping approach is applied to obtain heavy-traffic-stochastic-process limits for queueing models, including the case in which there are unmatched jumps in the limit process. These heavy-traffic limits generate simple approximations for complicated queueing processes and they reveal the impact of variability upon queueing performance. The book will be of interest to researchers and graduate students working in the areas of probability, stochastic processes, and operations research. In addition this book won the 2003 Lanchester Prize for the best contribution to Operation Research and Management in English, see: http://www.informs.org/Prizes/LanchesterPrize.html | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Mathematical statistics | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Operations Research/Decision Theory | |
650 | 4 | |a Statistical Theory and Methods | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Warteschlangentheorie |0 (DE-588)4255044-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Warteschlangentheorie |0 (DE-588)4255044-0 |D s |
689 | 0 | 1 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/b97479 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854393 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153089075183616 |
---|---|
any_adam_object | |
author | Whitt, Ward |
author_facet | Whitt, Ward |
author_role | aut |
author_sort | Whitt, Ward |
author_variant | w w ww |
building | Verbundindex |
bvnumber | BV042418976 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)849905500 (DE-599)BVBBV042418976 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/b97479 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02977nmm a2200517zc 4500</leader><controlfield tag="001">BV042418976</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387217482</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-387-21748-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387953588</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-95358-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/b97479</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)849905500</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042418976</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Whitt, Ward</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stochastic-Process Limits</subfield><subfield code="b">An Introduction to Stochastic-Process Limits and Their Application to Queues</subfield><subfield code="c">by Ward Whitt</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXIII, 602 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Series in Operations Research and Financial Engineering</subfield><subfield code="x">1431-8598</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Stochastic Process Limits are useful and interesting because they generate simple approximations for complicated stochastic processes and also help explain the statistical regularity associated with a macroscopic view of uncertainty. This book emphasizes the continuous-mapping approach to obtain new stochastic-process limits from previously established stochastic-process limits. The continuous-mapping approach is applied to obtain heavy-traffic-stochastic-process limits for queueing models, including the case in which there are unmatched jumps in the limit process. These heavy-traffic limits generate simple approximations for complicated queueing processes and they reveal the impact of variability upon queueing performance. The book will be of interest to researchers and graduate students working in the areas of probability, stochastic processes, and operations research. In addition this book won the 2003 Lanchester Prize for the best contribution to Operation Research and Management in English, see: http://www.informs.org/Prizes/LanchesterPrize.html</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations Research/Decision Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Theory and Methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Warteschlangentheorie</subfield><subfield code="0">(DE-588)4255044-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Warteschlangentheorie</subfield><subfield code="0">(DE-588)4255044-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/b97479</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854393</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042418976 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:03Z |
institution | BVB |
isbn | 9780387217482 9780387953588 |
issn | 1431-8598 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854393 |
oclc_num | 849905500 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XXIII, 602 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Springer New York |
record_format | marc |
series2 | Springer Series in Operations Research and Financial Engineering |
spelling | Whitt, Ward Verfasser aut Stochastic-Process Limits An Introduction to Stochastic-Process Limits and Their Application to Queues by Ward Whitt New York, NY Springer New York 2002 1 Online-Ressource (XXIII, 602 p) txt rdacontent c rdamedia cr rdacarrier Springer Series in Operations Research and Financial Engineering 1431-8598 Stochastic Process Limits are useful and interesting because they generate simple approximations for complicated stochastic processes and also help explain the statistical regularity associated with a macroscopic view of uncertainty. This book emphasizes the continuous-mapping approach to obtain new stochastic-process limits from previously established stochastic-process limits. The continuous-mapping approach is applied to obtain heavy-traffic-stochastic-process limits for queueing models, including the case in which there are unmatched jumps in the limit process. These heavy-traffic limits generate simple approximations for complicated queueing processes and they reveal the impact of variability upon queueing performance. The book will be of interest to researchers and graduate students working in the areas of probability, stochastic processes, and operations research. In addition this book won the 2003 Lanchester Prize for the best contribution to Operation Research and Management in English, see: http://www.informs.org/Prizes/LanchesterPrize.html Mathematics Distribution (Probability theory) Mathematical statistics Probability Theory and Stochastic Processes Operations Research/Decision Theory Statistical Theory and Methods Mathematik Warteschlangentheorie (DE-588)4255044-0 gnd rswk-swf Stochastischer Prozess (DE-588)4057630-9 gnd rswk-swf Warteschlangentheorie (DE-588)4255044-0 s Stochastischer Prozess (DE-588)4057630-9 s 1\p DE-604 https://doi.org/10.1007/b97479 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Whitt, Ward Stochastic-Process Limits An Introduction to Stochastic-Process Limits and Their Application to Queues Mathematics Distribution (Probability theory) Mathematical statistics Probability Theory and Stochastic Processes Operations Research/Decision Theory Statistical Theory and Methods Mathematik Warteschlangentheorie (DE-588)4255044-0 gnd Stochastischer Prozess (DE-588)4057630-9 gnd |
subject_GND | (DE-588)4255044-0 (DE-588)4057630-9 |
title | Stochastic-Process Limits An Introduction to Stochastic-Process Limits and Their Application to Queues |
title_auth | Stochastic-Process Limits An Introduction to Stochastic-Process Limits and Their Application to Queues |
title_exact_search | Stochastic-Process Limits An Introduction to Stochastic-Process Limits and Their Application to Queues |
title_full | Stochastic-Process Limits An Introduction to Stochastic-Process Limits and Their Application to Queues by Ward Whitt |
title_fullStr | Stochastic-Process Limits An Introduction to Stochastic-Process Limits and Their Application to Queues by Ward Whitt |
title_full_unstemmed | Stochastic-Process Limits An Introduction to Stochastic-Process Limits and Their Application to Queues by Ward Whitt |
title_short | Stochastic-Process Limits |
title_sort | stochastic process limits an introduction to stochastic process limits and their application to queues |
title_sub | An Introduction to Stochastic-Process Limits and Their Application to Queues |
topic | Mathematics Distribution (Probability theory) Mathematical statistics Probability Theory and Stochastic Processes Operations Research/Decision Theory Statistical Theory and Methods Mathematik Warteschlangentheorie (DE-588)4255044-0 gnd Stochastischer Prozess (DE-588)4057630-9 gnd |
topic_facet | Mathematics Distribution (Probability theory) Mathematical statistics Probability Theory and Stochastic Processes Operations Research/Decision Theory Statistical Theory and Methods Mathematik Warteschlangentheorie Stochastischer Prozess |
url | https://doi.org/10.1007/b97479 |
work_keys_str_mv | AT whittward stochasticprocesslimitsanintroductiontostochasticprocesslimitsandtheirapplicationtoqueues |