Real Mathematical Analysis:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
2002
|
Schriftenreihe: | Undergraduate Texts in Mathematics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Was plane geometry your favorite math course in high school? Did you like proving theorems? Are you sick of memorizing integrals? If so, real analysis could be your cup of tea. In contrast to calculus and elementary algebra, it involves neither formula manipulation nor applications to other fields of science. None. It is Pure Mathematics, and it is sure to appeal to the budding pure mathematician. In this new introduction to undergraduate real analysis the author takes a different approach from past presentations of the subject, by stressing the importance of pictures in mathematics and hard problems. The exposition is informal and relaxed, with many helpful asides, examples and occasional comments from mathematicians such as Dieudonne, Littlewood and Osserman. This book is based on the honors version of a course which the author has taught many times over the last 35 years at Berkeley. The book contains an excellent selection of more than 500 exercises |
Beschreibung: | 1 Online-Ressource (XII, 440 p) |
ISBN: | 9780387216843 9781441929419 |
ISSN: | 0172-6056 |
DOI: | 10.1007/978-0-387-21684-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042418955 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2002 |||| o||u| ||||||eng d | ||
020 | |a 9780387216843 |c Online |9 978-0-387-21684-3 | ||
020 | |a 9781441929419 |c Print |9 978-1-4419-2941-9 | ||
024 | 7 | |a 10.1007/978-0-387-21684-3 |2 doi | |
035 | |a (OCoLC)863987782 | ||
035 | |a (DE-599)BVBBV042418955 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.8 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Pugh, Charles Chapman |e Verfasser |4 aut | |
245 | 1 | 0 | |a Real Mathematical Analysis |c by Charles Chapman Pugh |
264 | 1 | |a New York, NY |b Springer New York |c 2002 | |
300 | |a 1 Online-Ressource (XII, 440 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Undergraduate Texts in Mathematics |x 0172-6056 | |
500 | |a Was plane geometry your favorite math course in high school? Did you like proving theorems? Are you sick of memorizing integrals? If so, real analysis could be your cup of tea. In contrast to calculus and elementary algebra, it involves neither formula manipulation nor applications to other fields of science. None. It is Pure Mathematics, and it is sure to appeal to the budding pure mathematician. In this new introduction to undergraduate real analysis the author takes a different approach from past presentations of the subject, by stressing the importance of pictures in mathematics and hard problems. The exposition is informal and relaxed, with many helpful asides, examples and occasional comments from mathematicians such as Dieudonne, Littlewood and Osserman. This book is based on the honors version of a course which the author has taught many times over the last 35 years at Berkeley. The book contains an excellent selection of more than 500 exercises | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Real Functions | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Reelle Analysis |0 (DE-588)4627581-2 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Reelle Analysis |0 (DE-588)4627581-2 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-0-387-21684-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854372 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153089042677760 |
---|---|
any_adam_object | |
author | Pugh, Charles Chapman |
author_facet | Pugh, Charles Chapman |
author_role | aut |
author_sort | Pugh, Charles Chapman |
author_variant | c c p cc ccp |
building | Verbundindex |
bvnumber | BV042418955 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863987782 (DE-599)BVBBV042418955 |
dewey-full | 515.8 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.8 |
dewey-search | 515.8 |
dewey-sort | 3515.8 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-0-387-21684-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02598nmm a2200469zc 4500</leader><controlfield tag="001">BV042418955</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387216843</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-387-21684-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441929419</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4419-2941-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-0-387-21684-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863987782</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042418955</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.8</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pugh, Charles Chapman</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Real Mathematical Analysis</subfield><subfield code="c">by Charles Chapman Pugh</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 440 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Undergraduate Texts in Mathematics</subfield><subfield code="x">0172-6056</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Was plane geometry your favorite math course in high school? Did you like proving theorems? Are you sick of memorizing integrals? If so, real analysis could be your cup of tea. In contrast to calculus and elementary algebra, it involves neither formula manipulation nor applications to other fields of science. None. It is Pure Mathematics, and it is sure to appeal to the budding pure mathematician. In this new introduction to undergraduate real analysis the author takes a different approach from past presentations of the subject, by stressing the importance of pictures in mathematics and hard problems. The exposition is informal and relaxed, with many helpful asides, examples and occasional comments from mathematicians such as Dieudonne, Littlewood and Osserman. This book is based on the honors version of a course which the author has taught many times over the last 35 years at Berkeley. The book contains an excellent selection of more than 500 exercises</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Real Functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reelle Analysis</subfield><subfield code="0">(DE-588)4627581-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Reelle Analysis</subfield><subfield code="0">(DE-588)4627581-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-0-387-21684-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854372</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV042418955 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:03Z |
institution | BVB |
isbn | 9780387216843 9781441929419 |
issn | 0172-6056 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854372 |
oclc_num | 863987782 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 440 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Springer New York |
record_format | marc |
series2 | Undergraduate Texts in Mathematics |
spelling | Pugh, Charles Chapman Verfasser aut Real Mathematical Analysis by Charles Chapman Pugh New York, NY Springer New York 2002 1 Online-Ressource (XII, 440 p) txt rdacontent c rdamedia cr rdacarrier Undergraduate Texts in Mathematics 0172-6056 Was plane geometry your favorite math course in high school? Did you like proving theorems? Are you sick of memorizing integrals? If so, real analysis could be your cup of tea. In contrast to calculus and elementary algebra, it involves neither formula manipulation nor applications to other fields of science. None. It is Pure Mathematics, and it is sure to appeal to the budding pure mathematician. In this new introduction to undergraduate real analysis the author takes a different approach from past presentations of the subject, by stressing the importance of pictures in mathematics and hard problems. The exposition is informal and relaxed, with many helpful asides, examples and occasional comments from mathematicians such as Dieudonne, Littlewood and Osserman. This book is based on the honors version of a course which the author has taught many times over the last 35 years at Berkeley. The book contains an excellent selection of more than 500 exercises Mathematics Real Functions Mathematik Reelle Analysis (DE-588)4627581-2 gnd rswk-swf 1\p (DE-588)4151278-9 Einführung gnd-content Reelle Analysis (DE-588)4627581-2 s 2\p DE-604 https://doi.org/10.1007/978-0-387-21684-3 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Pugh, Charles Chapman Real Mathematical Analysis Mathematics Real Functions Mathematik Reelle Analysis (DE-588)4627581-2 gnd |
subject_GND | (DE-588)4627581-2 (DE-588)4151278-9 |
title | Real Mathematical Analysis |
title_auth | Real Mathematical Analysis |
title_exact_search | Real Mathematical Analysis |
title_full | Real Mathematical Analysis by Charles Chapman Pugh |
title_fullStr | Real Mathematical Analysis by Charles Chapman Pugh |
title_full_unstemmed | Real Mathematical Analysis by Charles Chapman Pugh |
title_short | Real Mathematical Analysis |
title_sort | real mathematical analysis |
topic | Mathematics Real Functions Mathematik Reelle Analysis (DE-588)4627581-2 gnd |
topic_facet | Mathematics Real Functions Mathematik Reelle Analysis Einführung |
url | https://doi.org/10.1007/978-0-387-21684-3 |
work_keys_str_mv | AT pughcharleschapman realmathematicalanalysis |