Modeling and Inverse Problems in Imaging Analysis:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
2003
|
Schriftenreihe: | Applied Mathematical Sciences
155 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | More mathematics have been taking part in the development of digital image processing as a science, and the contributions are reflected in the increasingly important role modeling has played solving complex problems. This book is mostly concerned with energy-based models. Through concrete image analysis problems, the author develops consistent modeling, a know-how generally hidden in the proposed solutions. The book is divided into three main parts. The first two parts describe the theory behind the applications that are presented in the third part. These materials include splines (variational approach, regression spline, spline in high dimension) and random fields (Markovian field, parametric estimation, stochastic and deterministic optimization, continuous Gaussian field). Most of these applications come from industrial projects in which the author was involved in robot vision and radiography: tracking 3-D lines, radiographic image processing, 3-D reconstruction and tomography, matching and deformation learning. Numerous graphical illustrations accompany the text showing the performance of the proposed models. This book will be useful to researchers and graduate students in mathematics, physics, computer science, and engineering |
Beschreibung: | 1 Online-Ressource (XXII, 314 p) |
ISBN: | 9780387216621 9781441930491 |
ISSN: | 0066-5452 |
DOI: | 10.1007/978-0-387-21662-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042418949 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2003 |||| o||u| ||||||eng d | ||
020 | |a 9780387216621 |c Online |9 978-0-387-21662-1 | ||
020 | |a 9781441930491 |c Print |9 978-1-4419-3049-1 | ||
024 | 7 | |a 10.1007/978-0-387-21662-1 |2 doi | |
035 | |a (OCoLC)1184496410 | ||
035 | |a (DE-599)BVBBV042418949 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Chalmond, Bernard |e Verfasser |4 aut | |
245 | 1 | 0 | |a Modeling and Inverse Problems in Imaging Analysis |c by Bernard Chalmond |
246 | 1 | 3 | |a Translated by Kari A. Foster |
264 | 1 | |a New York, NY |b Springer New York |c 2003 | |
300 | |a 1 Online-Ressource (XXII, 314 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Applied Mathematical Sciences |v 155 |x 0066-5452 | |
500 | |a More mathematics have been taking part in the development of digital image processing as a science, and the contributions are reflected in the increasingly important role modeling has played solving complex problems. This book is mostly concerned with energy-based models. Through concrete image analysis problems, the author develops consistent modeling, a know-how generally hidden in the proposed solutions. The book is divided into three main parts. The first two parts describe the theory behind the applications that are presented in the third part. These materials include splines (variational approach, regression spline, spline in high dimension) and random fields (Markovian field, parametric estimation, stochastic and deterministic optimization, continuous Gaussian field). Most of these applications come from industrial projects in which the author was involved in robot vision and radiography: tracking 3-D lines, radiographic image processing, 3-D reconstruction and tomography, matching and deformation learning. Numerous graphical illustrations accompany the text showing the performance of the proposed models. This book will be useful to researchers and graduate students in mathematics, physics, computer science, and engineering | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Computer vision | |
650 | 4 | |a Mathematical statistics | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Statistical Theory and Methods | |
650 | 4 | |a Computer Imaging, Vision, Pattern Recognition and Graphics | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Bildanalyse |0 (DE-588)4145391-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Spline-Approximation |0 (DE-588)4182394-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Markov-Modell |0 (DE-588)4168923-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Markov-Modell |0 (DE-588)4168923-9 |D s |
689 | 0 | 1 | |a Spline-Approximation |0 (DE-588)4182394-1 |D s |
689 | 0 | 2 | |a Bildanalyse |0 (DE-588)4145391-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-0-387-21662-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854366 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153089019609088 |
---|---|
any_adam_object | |
author | Chalmond, Bernard |
author_facet | Chalmond, Bernard |
author_role | aut |
author_sort | Chalmond, Bernard |
author_variant | b c bc |
building | Verbundindex |
bvnumber | BV042418949 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184496410 (DE-599)BVBBV042418949 |
dewey-full | 519 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519 |
dewey-search | 519 |
dewey-sort | 3519 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-0-387-21662-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03303nmm a2200565zcb4500</leader><controlfield tag="001">BV042418949</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387216621</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-387-21662-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441930491</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4419-3049-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-0-387-21662-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184496410</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042418949</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chalmond, Bernard</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modeling and Inverse Problems in Imaging Analysis</subfield><subfield code="c">by Bernard Chalmond</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Translated by Kari A. Foster</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXII, 314 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Applied Mathematical Sciences</subfield><subfield code="v">155</subfield><subfield code="x">0066-5452</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">More mathematics have been taking part in the development of digital image processing as a science, and the contributions are reflected in the increasingly important role modeling has played solving complex problems. This book is mostly concerned with energy-based models. Through concrete image analysis problems, the author develops consistent modeling, a know-how generally hidden in the proposed solutions. The book is divided into three main parts. The first two parts describe the theory behind the applications that are presented in the third part. These materials include splines (variational approach, regression spline, spline in high dimension) and random fields (Markovian field, parametric estimation, stochastic and deterministic optimization, continuous Gaussian field). Most of these applications come from industrial projects in which the author was involved in robot vision and radiography: tracking 3-D lines, radiographic image processing, 3-D reconstruction and tomography, matching and deformation learning. Numerous graphical illustrations accompany the text showing the performance of the proposed models. This book will be useful to researchers and graduate students in mathematics, physics, computer science, and engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer vision</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Theory and Methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer Imaging, Vision, Pattern Recognition and Graphics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bildanalyse</subfield><subfield code="0">(DE-588)4145391-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spline-Approximation</subfield><subfield code="0">(DE-588)4182394-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Markov-Modell</subfield><subfield code="0">(DE-588)4168923-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Markov-Modell</subfield><subfield code="0">(DE-588)4168923-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Spline-Approximation</subfield><subfield code="0">(DE-588)4182394-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Bildanalyse</subfield><subfield code="0">(DE-588)4145391-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-0-387-21662-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854366</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042418949 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:03Z |
institution | BVB |
isbn | 9780387216621 9781441930491 |
issn | 0066-5452 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854366 |
oclc_num | 1184496410 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XXII, 314 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Springer New York |
record_format | marc |
series2 | Applied Mathematical Sciences |
spelling | Chalmond, Bernard Verfasser aut Modeling and Inverse Problems in Imaging Analysis by Bernard Chalmond Translated by Kari A. Foster New York, NY Springer New York 2003 1 Online-Ressource (XXII, 314 p) txt rdacontent c rdamedia cr rdacarrier Applied Mathematical Sciences 155 0066-5452 More mathematics have been taking part in the development of digital image processing as a science, and the contributions are reflected in the increasingly important role modeling has played solving complex problems. This book is mostly concerned with energy-based models. Through concrete image analysis problems, the author develops consistent modeling, a know-how generally hidden in the proposed solutions. The book is divided into three main parts. The first two parts describe the theory behind the applications that are presented in the third part. These materials include splines (variational approach, regression spline, spline in high dimension) and random fields (Markovian field, parametric estimation, stochastic and deterministic optimization, continuous Gaussian field). Most of these applications come from industrial projects in which the author was involved in robot vision and radiography: tracking 3-D lines, radiographic image processing, 3-D reconstruction and tomography, matching and deformation learning. Numerous graphical illustrations accompany the text showing the performance of the proposed models. This book will be useful to researchers and graduate students in mathematics, physics, computer science, and engineering Mathematics Computer vision Mathematical statistics Applications of Mathematics Statistical Theory and Methods Computer Imaging, Vision, Pattern Recognition and Graphics Theoretical, Mathematical and Computational Physics Mathematik Bildanalyse (DE-588)4145391-8 gnd rswk-swf Spline-Approximation (DE-588)4182394-1 gnd rswk-swf Markov-Modell (DE-588)4168923-9 gnd rswk-swf Markov-Modell (DE-588)4168923-9 s Spline-Approximation (DE-588)4182394-1 s Bildanalyse (DE-588)4145391-8 s 1\p DE-604 https://doi.org/10.1007/978-0-387-21662-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Chalmond, Bernard Modeling and Inverse Problems in Imaging Analysis Mathematics Computer vision Mathematical statistics Applications of Mathematics Statistical Theory and Methods Computer Imaging, Vision, Pattern Recognition and Graphics Theoretical, Mathematical and Computational Physics Mathematik Bildanalyse (DE-588)4145391-8 gnd Spline-Approximation (DE-588)4182394-1 gnd Markov-Modell (DE-588)4168923-9 gnd |
subject_GND | (DE-588)4145391-8 (DE-588)4182394-1 (DE-588)4168923-9 |
title | Modeling and Inverse Problems in Imaging Analysis |
title_alt | Translated by Kari A. Foster |
title_auth | Modeling and Inverse Problems in Imaging Analysis |
title_exact_search | Modeling and Inverse Problems in Imaging Analysis |
title_full | Modeling and Inverse Problems in Imaging Analysis by Bernard Chalmond |
title_fullStr | Modeling and Inverse Problems in Imaging Analysis by Bernard Chalmond |
title_full_unstemmed | Modeling and Inverse Problems in Imaging Analysis by Bernard Chalmond |
title_short | Modeling and Inverse Problems in Imaging Analysis |
title_sort | modeling and inverse problems in imaging analysis |
topic | Mathematics Computer vision Mathematical statistics Applications of Mathematics Statistical Theory and Methods Computer Imaging, Vision, Pattern Recognition and Graphics Theoretical, Mathematical and Computational Physics Mathematik Bildanalyse (DE-588)4145391-8 gnd Spline-Approximation (DE-588)4182394-1 gnd Markov-Modell (DE-588)4168923-9 gnd |
topic_facet | Mathematics Computer vision Mathematical statistics Applications of Mathematics Statistical Theory and Methods Computer Imaging, Vision, Pattern Recognition and Graphics Theoretical, Mathematical and Computational Physics Mathematik Bildanalyse Spline-Approximation Markov-Modell |
url | https://doi.org/10.1007/978-0-387-21662-1 |
work_keys_str_mv | AT chalmondbernard modelingandinverseproblemsinimaginganalysis AT chalmondbernard translatedbykariafoster |