Nonholonomic Mechanics and Control:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
2003
|
Schriftenreihe: | Interdisciplinary Applied Mathematics
24 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Nonholonomic Mechanics and Control develops the rich connections between control theory and geometric mechanics. Control theory is linked with a geometric view of classical mechanics in both its Lagrangian and Hamiltonian formulations and especially with the theory of nonholonomic mechanics (mechanical systems subject to motion constraints). Both controllability and optimal control are treated, including the Pontryagin maximum principle. In addition, the stability, control, and stabilization of mechanical systems are discussed. In particular, these items are considered for nonholonomic systems. The aim of the book is to provide a unified treatment of nonlinear control theory and constrained mechanical systems, incorporating material that has not yet made its way into texts and monographs. Detailed illustrations and exercises are included throughout the text. This book is intended for graduate and advance undergraduate students in mathematics, physics and engineering who wish to learn this subject and for researchers in the area who want to enhance their techniques |
Beschreibung: | 1 Online-Ressource (XIX, 484 p) |
ISBN: | 9780387216447 9781441930439 |
ISSN: | 0939-6047 |
DOI: | 10.1007/b97376 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042418942 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2003 |||| o||u| ||||||eng d | ||
020 | |a 9780387216447 |c Online |9 978-0-387-21644-7 | ||
020 | |a 9781441930439 |c Print |9 978-1-4419-3043-9 | ||
024 | 7 | |a 10.1007/b97376 |2 doi | |
035 | |a (OCoLC)1165485283 | ||
035 | |a (DE-599)BVBBV042418942 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Bloch, A. M. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Nonholonomic Mechanics and Control |c by A. M. Bloch |
264 | 1 | |a New York, NY |b Springer New York |c 2003 | |
300 | |a 1 Online-Ressource (XIX, 484 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Interdisciplinary Applied Mathematics |v 24 |x 0939-6047 | |
500 | |a Nonholonomic Mechanics and Control develops the rich connections between control theory and geometric mechanics. Control theory is linked with a geometric view of classical mechanics in both its Lagrangian and Hamiltonian formulations and especially with the theory of nonholonomic mechanics (mechanical systems subject to motion constraints). Both controllability and optimal control are treated, including the Pontryagin maximum principle. In addition, the stability, control, and stabilization of mechanical systems are discussed. In particular, these items are considered for nonholonomic systems. The aim of the book is to provide a unified treatment of nonlinear control theory and constrained mechanical systems, incorporating material that has not yet made its way into texts and monographs. Detailed illustrations and exercises are included throughout the text. This book is intended for graduate and advance undergraduate students in mathematics, physics and engineering who wish to learn this subject and for researchers in the area who want to enhance their techniques | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Differentiable dynamical systems | |
650 | 4 | |a Systems theory | |
650 | 4 | |a Mechanics, applied | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Control, Robotics, Mechatronics | |
650 | 4 | |a Dynamical Systems and Ergodic Theory | |
650 | 4 | |a Systems Theory, Control | |
650 | 4 | |a Theoretical and Applied Mechanics | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Nichtholonome Bedingung |0 (DE-588)4171735-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mechanik |0 (DE-588)4038168-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mechanisches System |0 (DE-588)4132811-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Kontrolltheorie |0 (DE-588)4475218-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtholonome Bedingung |0 (DE-588)4171735-1 |D s |
689 | 0 | 1 | |a Nichtlineare Kontrolltheorie |0 (DE-588)4475218-0 |D s |
689 | 0 | 2 | |a Mechanik |0 (DE-588)4038168-7 |D s |
689 | 0 | 3 | |a Mechanisches System |0 (DE-588)4132811-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/b97376 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854359 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153088999686144 |
---|---|
any_adam_object | |
author | Bloch, A. M. |
author_facet | Bloch, A. M. |
author_role | aut |
author_sort | Bloch, A. M. |
author_variant | a m b am amb |
building | Verbundindex |
bvnumber | BV042418942 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165485283 (DE-599)BVBBV042418942 |
dewey-full | 519 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519 |
dewey-search | 519 |
dewey-sort | 3519 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/b97376 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03249nmm a2200601zcb4500</leader><controlfield tag="001">BV042418942</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387216447</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-387-21644-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441930439</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4419-3043-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/b97376</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165485283</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042418942</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bloch, A. M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonholonomic Mechanics and Control</subfield><subfield code="c">by A. M. Bloch</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIX, 484 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Interdisciplinary Applied Mathematics</subfield><subfield code="v">24</subfield><subfield code="x">0939-6047</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Nonholonomic Mechanics and Control develops the rich connections between control theory and geometric mechanics. Control theory is linked with a geometric view of classical mechanics in both its Lagrangian and Hamiltonian formulations and especially with the theory of nonholonomic mechanics (mechanical systems subject to motion constraints). Both controllability and optimal control are treated, including the Pontryagin maximum principle. In addition, the stability, control, and stabilization of mechanical systems are discussed. In particular, these items are considered for nonholonomic systems. The aim of the book is to provide a unified treatment of nonlinear control theory and constrained mechanical systems, incorporating material that has not yet made its way into texts and monographs. Detailed illustrations and exercises are included throughout the text. This book is intended for graduate and advance undergraduate students in mathematics, physics and engineering who wish to learn this subject and for researchers in the area who want to enhance their techniques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differentiable dynamical systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics, applied</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control, Robotics, Mechatronics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamical Systems and Ergodic Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems Theory, Control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical and Applied Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtholonome Bedingung</subfield><subfield code="0">(DE-588)4171735-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mechanik</subfield><subfield code="0">(DE-588)4038168-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mechanisches System</subfield><subfield code="0">(DE-588)4132811-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Kontrolltheorie</subfield><subfield code="0">(DE-588)4475218-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtholonome Bedingung</subfield><subfield code="0">(DE-588)4171735-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nichtlineare Kontrolltheorie</subfield><subfield code="0">(DE-588)4475218-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Mechanik</subfield><subfield code="0">(DE-588)4038168-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Mechanisches System</subfield><subfield code="0">(DE-588)4132811-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/b97376</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854359</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042418942 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:03Z |
institution | BVB |
isbn | 9780387216447 9781441930439 |
issn | 0939-6047 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854359 |
oclc_num | 1165485283 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIX, 484 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Springer New York |
record_format | marc |
series2 | Interdisciplinary Applied Mathematics |
spelling | Bloch, A. M. Verfasser aut Nonholonomic Mechanics and Control by A. M. Bloch New York, NY Springer New York 2003 1 Online-Ressource (XIX, 484 p) txt rdacontent c rdamedia cr rdacarrier Interdisciplinary Applied Mathematics 24 0939-6047 Nonholonomic Mechanics and Control develops the rich connections between control theory and geometric mechanics. Control theory is linked with a geometric view of classical mechanics in both its Lagrangian and Hamiltonian formulations and especially with the theory of nonholonomic mechanics (mechanical systems subject to motion constraints). Both controllability and optimal control are treated, including the Pontryagin maximum principle. In addition, the stability, control, and stabilization of mechanical systems are discussed. In particular, these items are considered for nonholonomic systems. The aim of the book is to provide a unified treatment of nonlinear control theory and constrained mechanical systems, incorporating material that has not yet made its way into texts and monographs. Detailed illustrations and exercises are included throughout the text. This book is intended for graduate and advance undergraduate students in mathematics, physics and engineering who wish to learn this subject and for researchers in the area who want to enhance their techniques Mathematics Differentiable dynamical systems Systems theory Mechanics, applied Applications of Mathematics Control, Robotics, Mechatronics Dynamical Systems and Ergodic Theory Systems Theory, Control Theoretical and Applied Mechanics Mathematik Nichtholonome Bedingung (DE-588)4171735-1 gnd rswk-swf Mechanik (DE-588)4038168-7 gnd rswk-swf Mechanisches System (DE-588)4132811-5 gnd rswk-swf Nichtlineare Kontrolltheorie (DE-588)4475218-0 gnd rswk-swf Nichtholonome Bedingung (DE-588)4171735-1 s Nichtlineare Kontrolltheorie (DE-588)4475218-0 s Mechanik (DE-588)4038168-7 s Mechanisches System (DE-588)4132811-5 s 1\p DE-604 https://doi.org/10.1007/b97376 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Bloch, A. M. Nonholonomic Mechanics and Control Mathematics Differentiable dynamical systems Systems theory Mechanics, applied Applications of Mathematics Control, Robotics, Mechatronics Dynamical Systems and Ergodic Theory Systems Theory, Control Theoretical and Applied Mechanics Mathematik Nichtholonome Bedingung (DE-588)4171735-1 gnd Mechanik (DE-588)4038168-7 gnd Mechanisches System (DE-588)4132811-5 gnd Nichtlineare Kontrolltheorie (DE-588)4475218-0 gnd |
subject_GND | (DE-588)4171735-1 (DE-588)4038168-7 (DE-588)4132811-5 (DE-588)4475218-0 |
title | Nonholonomic Mechanics and Control |
title_auth | Nonholonomic Mechanics and Control |
title_exact_search | Nonholonomic Mechanics and Control |
title_full | Nonholonomic Mechanics and Control by A. M. Bloch |
title_fullStr | Nonholonomic Mechanics and Control by A. M. Bloch |
title_full_unstemmed | Nonholonomic Mechanics and Control by A. M. Bloch |
title_short | Nonholonomic Mechanics and Control |
title_sort | nonholonomic mechanics and control |
topic | Mathematics Differentiable dynamical systems Systems theory Mechanics, applied Applications of Mathematics Control, Robotics, Mechatronics Dynamical Systems and Ergodic Theory Systems Theory, Control Theoretical and Applied Mechanics Mathematik Nichtholonome Bedingung (DE-588)4171735-1 gnd Mechanik (DE-588)4038168-7 gnd Mechanisches System (DE-588)4132811-5 gnd Nichtlineare Kontrolltheorie (DE-588)4475218-0 gnd |
topic_facet | Mathematics Differentiable dynamical systems Systems theory Mechanics, applied Applications of Mathematics Control, Robotics, Mechatronics Dynamical Systems and Ergodic Theory Systems Theory, Control Theoretical and Applied Mechanics Mathematik Nichtholonome Bedingung Mechanik Mechanisches System Nichtlineare Kontrolltheorie |
url | https://doi.org/10.1007/b97376 |
work_keys_str_mv | AT blocham nonholonomicmechanicsandcontrol |