Stochastic Petri Nets: Modelling, Stability, Simulation
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
2002
|
Schriftenreihe: | Springer Series in Operations Research
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book was motivated by a desire to bridge the gap between two important areas of research related to the design and operation of engineering and information systems. The first area concerns the development of mathematical tools for formal specification of complex probabilistic systems, with an eye toward subsequent simulation of the resulting stochastic model on a computer. The second area concerns the development of methods for analysis of simulation output. Research on modelling techniques has been driven by the ever-increasing size and complexity of computer, manufacturing, transportation, workflow, and communication systems. Many engineers and systems designers now recognize that the use of formal models has a number of advantages over simply writing complicated simulation programs from scratch. Not only is it much easier to generate software that is free of logical errors, but various qualitative system properties— absence of deadlock, impossibility of reaching catastrophic states, and so forth— can be verified far more easily for a formal model than for an ad-hoc computer program. Indeed, certain system properties can sometimes be verified automatically. Our focus is on systems that can be viewed as making state transitions when events associated with the occupied state occur. More specifically, we consider discrete-event systems in which the stochastic state transitions occur only at an increasing sequence of random times. The "Bedienungsprozess" (service process) framework, developed by König, Matthes, and Nawrotzki in the 1960s and early 1970s, provided the first set of building blocks for formal modelling of general discrete-event systems. The modern incarnation of the Bedienungsprozess is the "generalized semi-Markov process" (gsmp) viii Preface |
Beschreibung: | 1 Online-Ressource (XXII, 510 p) |
ISBN: | 9780387215525 9781441930019 |
ISSN: | 1431-8598 |
DOI: | 10.1007/b97265 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042418911 | ||
003 | DE-604 | ||
005 | 20180108 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2002 |||| o||u| ||||||eng d | ||
020 | |a 9780387215525 |c Online |9 978-0-387-21552-5 | ||
020 | |a 9781441930019 |c Print |9 978-1-4419-3001-9 | ||
024 | 7 | |a 10.1007/b97265 |2 doi | |
035 | |a (OCoLC)850501833 | ||
035 | |a (DE-599)BVBBV042418911 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Haas, Peter J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Stochastic Petri Nets |b Modelling, Stability, Simulation |c by Peter J. Haas |
264 | 1 | |a New York, NY |b Springer New York |c 2002 | |
300 | |a 1 Online-Ressource (XXII, 510 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Series in Operations Research |x 1431-8598 | |
500 | |a This book was motivated by a desire to bridge the gap between two important areas of research related to the design and operation of engineering and information systems. The first area concerns the development of mathematical tools for formal specification of complex probabilistic systems, with an eye toward subsequent simulation of the resulting stochastic model on a computer. The second area concerns the development of methods for analysis of simulation output. Research on modelling techniques has been driven by the ever-increasing size and complexity of computer, manufacturing, transportation, workflow, and communication systems. Many engineers and systems designers now recognize that the use of formal models has a number of advantages over simply writing complicated simulation programs from scratch. Not only is it much easier to generate software that is free of logical errors, but various qualitative system properties— absence of deadlock, impossibility of reaching catastrophic states, and so forth— can be verified far more easily for a formal model than for an ad-hoc computer program. Indeed, certain system properties can sometimes be verified automatically. Our focus is on systems that can be viewed as making state transitions when events associated with the occupied state occur. More specifically, we consider discrete-event systems in which the stochastic state transitions occur only at an increasing sequence of random times. The "Bedienungsprozess" (service process) framework, developed by König, Matthes, and Nawrotzki in the 1960s and early 1970s, provided the first set of building blocks for formal modelling of general discrete-event systems. The modern incarnation of the Bedienungsprozess is the "generalized semi-Markov process" (gsmp) viii Preface | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Computer simulation | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Mathematical statistics | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Simulation and Modeling | |
650 | 4 | |a Statistical Theory and Methods | |
650 | 4 | |a Operations Research, Management Science | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Stochastisches Petri-Netz |0 (DE-588)4337061-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Modellierung |0 (DE-588)4170297-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zeitdiskretes System |0 (DE-588)4127297-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Computersimulation |0 (DE-588)4148259-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Stochastisches Petri-Netz |0 (DE-588)4337061-5 |D s |
689 | 0 | 1 | |a Zeitdiskretes System |0 (DE-588)4127297-3 |D s |
689 | 0 | 2 | |a Modellierung |0 (DE-588)4170297-9 |D s |
689 | 0 | 3 | |a Computersimulation |0 (DE-588)4148259-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/b97265 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854328 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153088919994368 |
---|---|
any_adam_object | |
author | Haas, Peter J. |
author_facet | Haas, Peter J. |
author_role | aut |
author_sort | Haas, Peter J. |
author_variant | p j h pj pjh |
building | Verbundindex |
bvnumber | BV042418911 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)850501833 (DE-599)BVBBV042418911 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/b97265 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03961nmm a2200589zc 4500</leader><controlfield tag="001">BV042418911</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180108 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387215525</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-387-21552-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441930019</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4419-3001-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/b97265</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)850501833</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042418911</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Haas, Peter J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stochastic Petri Nets</subfield><subfield code="b">Modelling, Stability, Simulation</subfield><subfield code="c">by Peter J. Haas</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXII, 510 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Series in Operations Research</subfield><subfield code="x">1431-8598</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book was motivated by a desire to bridge the gap between two important areas of research related to the design and operation of engineering and information systems. The first area concerns the development of mathematical tools for formal specification of complex probabilistic systems, with an eye toward subsequent simulation of the resulting stochastic model on a computer. The second area concerns the development of methods for analysis of simulation output. Research on modelling techniques has been driven by the ever-increasing size and complexity of computer, manufacturing, transportation, workflow, and communication systems. Many engineers and systems designers now recognize that the use of formal models has a number of advantages over simply writing complicated simulation programs from scratch. Not only is it much easier to generate software that is free of logical errors, but various qualitative system properties— absence of deadlock, impossibility of reaching catastrophic states, and so forth— can be verified far more easily for a formal model than for an ad-hoc computer program. Indeed, certain system properties can sometimes be verified automatically. Our focus is on systems that can be viewed as making state transitions when events associated with the occupied state occur. More specifically, we consider discrete-event systems in which the stochastic state transitions occur only at an increasing sequence of random times. The "Bedienungsprozess" (service process) framework, developed by König, Matthes, and Nawrotzki in the 1960s and early 1970s, provided the first set of building blocks for formal modelling of general discrete-event systems. The modern incarnation of the Bedienungsprozess is the "generalized semi-Markov process" (gsmp) viii Preface</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simulation and Modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Theory and Methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations Research, Management Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastisches Petri-Netz</subfield><subfield code="0">(DE-588)4337061-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modellierung</subfield><subfield code="0">(DE-588)4170297-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zeitdiskretes System</subfield><subfield code="0">(DE-588)4127297-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computersimulation</subfield><subfield code="0">(DE-588)4148259-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stochastisches Petri-Netz</subfield><subfield code="0">(DE-588)4337061-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Zeitdiskretes System</subfield><subfield code="0">(DE-588)4127297-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Modellierung</subfield><subfield code="0">(DE-588)4170297-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Computersimulation</subfield><subfield code="0">(DE-588)4148259-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/b97265</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854328</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042418911 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:03Z |
institution | BVB |
isbn | 9780387215525 9781441930019 |
issn | 1431-8598 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854328 |
oclc_num | 850501833 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XXII, 510 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Springer New York |
record_format | marc |
series2 | Springer Series in Operations Research |
spelling | Haas, Peter J. Verfasser aut Stochastic Petri Nets Modelling, Stability, Simulation by Peter J. Haas New York, NY Springer New York 2002 1 Online-Ressource (XXII, 510 p) txt rdacontent c rdamedia cr rdacarrier Springer Series in Operations Research 1431-8598 This book was motivated by a desire to bridge the gap between two important areas of research related to the design and operation of engineering and information systems. The first area concerns the development of mathematical tools for formal specification of complex probabilistic systems, with an eye toward subsequent simulation of the resulting stochastic model on a computer. The second area concerns the development of methods for analysis of simulation output. Research on modelling techniques has been driven by the ever-increasing size and complexity of computer, manufacturing, transportation, workflow, and communication systems. Many engineers and systems designers now recognize that the use of formal models has a number of advantages over simply writing complicated simulation programs from scratch. Not only is it much easier to generate software that is free of logical errors, but various qualitative system properties— absence of deadlock, impossibility of reaching catastrophic states, and so forth— can be verified far more easily for a formal model than for an ad-hoc computer program. Indeed, certain system properties can sometimes be verified automatically. Our focus is on systems that can be viewed as making state transitions when events associated with the occupied state occur. More specifically, we consider discrete-event systems in which the stochastic state transitions occur only at an increasing sequence of random times. The "Bedienungsprozess" (service process) framework, developed by König, Matthes, and Nawrotzki in the 1960s and early 1970s, provided the first set of building blocks for formal modelling of general discrete-event systems. The modern incarnation of the Bedienungsprozess is the "generalized semi-Markov process" (gsmp) viii Preface Mathematics Computer simulation Distribution (Probability theory) Mathematical statistics Probability Theory and Stochastic Processes Simulation and Modeling Statistical Theory and Methods Operations Research, Management Science Mathematik Stochastisches Petri-Netz (DE-588)4337061-5 gnd rswk-swf Modellierung (DE-588)4170297-9 gnd rswk-swf Zeitdiskretes System (DE-588)4127297-3 gnd rswk-swf Computersimulation (DE-588)4148259-1 gnd rswk-swf Stochastisches Petri-Netz (DE-588)4337061-5 s Zeitdiskretes System (DE-588)4127297-3 s Modellierung (DE-588)4170297-9 s Computersimulation (DE-588)4148259-1 s 1\p DE-604 https://doi.org/10.1007/b97265 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Haas, Peter J. Stochastic Petri Nets Modelling, Stability, Simulation Mathematics Computer simulation Distribution (Probability theory) Mathematical statistics Probability Theory and Stochastic Processes Simulation and Modeling Statistical Theory and Methods Operations Research, Management Science Mathematik Stochastisches Petri-Netz (DE-588)4337061-5 gnd Modellierung (DE-588)4170297-9 gnd Zeitdiskretes System (DE-588)4127297-3 gnd Computersimulation (DE-588)4148259-1 gnd |
subject_GND | (DE-588)4337061-5 (DE-588)4170297-9 (DE-588)4127297-3 (DE-588)4148259-1 |
title | Stochastic Petri Nets Modelling, Stability, Simulation |
title_auth | Stochastic Petri Nets Modelling, Stability, Simulation |
title_exact_search | Stochastic Petri Nets Modelling, Stability, Simulation |
title_full | Stochastic Petri Nets Modelling, Stability, Simulation by Peter J. Haas |
title_fullStr | Stochastic Petri Nets Modelling, Stability, Simulation by Peter J. Haas |
title_full_unstemmed | Stochastic Petri Nets Modelling, Stability, Simulation by Peter J. Haas |
title_short | Stochastic Petri Nets |
title_sort | stochastic petri nets modelling stability simulation |
title_sub | Modelling, Stability, Simulation |
topic | Mathematics Computer simulation Distribution (Probability theory) Mathematical statistics Probability Theory and Stochastic Processes Simulation and Modeling Statistical Theory and Methods Operations Research, Management Science Mathematik Stochastisches Petri-Netz (DE-588)4337061-5 gnd Modellierung (DE-588)4170297-9 gnd Zeitdiskretes System (DE-588)4127297-3 gnd Computersimulation (DE-588)4148259-1 gnd |
topic_facet | Mathematics Computer simulation Distribution (Probability theory) Mathematical statistics Probability Theory and Stochastic Processes Simulation and Modeling Statistical Theory and Methods Operations Research, Management Science Mathematik Stochastisches Petri-Netz Modellierung Zeitdiskretes System Computersimulation |
url | https://doi.org/10.1007/b97265 |
work_keys_str_mv | AT haaspeterj stochasticpetrinetsmodellingstabilitysimulation |