The Geometry of Higher-Order Lagrange Spaces: Applications to Mechanics and Physics
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1997
|
Schriftenreihe: | Fundamental Theories of Physics, An International Book Series on The Fundamental Theories of Physics: Their Clarification, Development and Application
82 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This monograph is mostly devoted to the problem of the geome trizing of Lagrangians which depend on higher order accelerations. It naturally prolongs the theme of the monograph "The Geometry of La grange spaces: Theory and Applications", written together with M. Anastasiei and published by Kluwer Academic Publishers in 1994. The existence of Lagrangians of order k > 1 has been contemplated by mechanicists and physicists for a long time. Einstein had grasped their presence in connection with the Brownian motion. They are also present in relativistic theories based on metrics which depend on speeds and accelerations of particles or in the Hamiltonian formulation of non linear systems given by Korteweg-de Vries equations. There resulted from here the methods to be adopted in their theoretical treatment. One is based on the variational problem involving the integral action of the Lagrangian. A second one is derived from the axioms of Analytical Mechanics involving the Poincare-Cartan forms. The geometrical methods based on the study of the geometries of higher order could invigorate the whole theory. This is the way adopted by us in defining and studying the Lagrange spaces of higher order. The problems raised by the geometrization of Lagrangians of order k > 1 investigated by many scholars: Ch. Ehresmann, P. Libermann, J. Pommaret; J.T. Synge, M. Crampin, P. Saunders; G.S. Asanov, P.Aringazin; I. Kolar, D. Krupka; M. de Leon, W. Sarlet, P. Cantrjin, H. Rund, W.M. Tulczyjew, A. Kawaguchi, K. Yano, K. Kondo, D. |
Beschreibung: | 1 Online-Ressource (XV, 336 p) |
ISBN: | 9789401733380 9789048147892 |
DOI: | 10.1007/978-94-017-3338-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042416351 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s1997 |||| o||u| ||||||eng d | ||
020 | |a 9789401733380 |c Online |9 978-94-017-3338-0 | ||
020 | |a 9789048147892 |c Print |9 978-90-481-4789-2 | ||
024 | 7 | |a 10.1007/978-94-017-3338-0 |2 doi | |
035 | |a (OCoLC)862532597 | ||
035 | |a (DE-599)BVBBV042416351 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 516.36 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Miron, Radu |e Verfasser |4 aut | |
245 | 1 | 0 | |a The Geometry of Higher-Order Lagrange Spaces |b Applications to Mechanics and Physics |c by Radu Miron |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1997 | |
300 | |a 1 Online-Ressource (XV, 336 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Fundamental Theories of Physics, An International Book Series on The Fundamental Theories of Physics: Their Clarification, Development and Application |v 82 | |
500 | |a This monograph is mostly devoted to the problem of the geome trizing of Lagrangians which depend on higher order accelerations. It naturally prolongs the theme of the monograph "The Geometry of La grange spaces: Theory and Applications", written together with M. Anastasiei and published by Kluwer Academic Publishers in 1994. The existence of Lagrangians of order k > 1 has been contemplated by mechanicists and physicists for a long time. Einstein had grasped their presence in connection with the Brownian motion. They are also present in relativistic theories based on metrics which depend on speeds and accelerations of particles or in the Hamiltonian formulation of non linear systems given by Korteweg-de Vries equations. There resulted from here the methods to be adopted in their theoretical treatment. One is based on the variational problem involving the integral action of the Lagrangian. A second one is derived from the axioms of Analytical Mechanics involving the Poincare-Cartan forms. The geometrical methods based on the study of the geometries of higher order could invigorate the whole theory. This is the way adopted by us in defining and studying the Lagrange spaces of higher order. The problems raised by the geometrization of Lagrangians of order k > 1 investigated by many scholars: Ch. Ehresmann, P. Libermann, J. Pommaret; J.T. Synge, M. Crampin, P. Saunders; G.S. Asanov, P.Aringazin; I. Kolar, D. Krupka; M. de Leon, W. Sarlet, P. Cantrjin, H. Rund, W.M. Tulczyjew, A. Kawaguchi, K. Yano, K. Kondo, D. | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global differential geometry | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Mechanics | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Calculus of Variations and Optimal Control; Optimization | |
650 | 4 | |a Optics, Optoelectronics, Plasmonics and Optical Devices | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Ordnung n |0 (DE-588)4322729-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lagrange-Raum |0 (DE-588)4458304-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lagrange-Raum |0 (DE-588)4458304-7 |D s |
689 | 0 | 1 | |a Ordnung n |0 (DE-588)4322729-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-017-3338-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027851844 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153084700524544 |
---|---|
any_adam_object | |
author | Miron, Radu |
author_facet | Miron, Radu |
author_role | aut |
author_sort | Miron, Radu |
author_variant | r m rm |
building | Verbundindex |
bvnumber | BV042416351 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)862532597 (DE-599)BVBBV042416351 |
dewey-full | 516.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.36 |
dewey-search | 516.36 |
dewey-sort | 3516.36 |
dewey-tens | 510 - Mathematics |
discipline | Physik Mathematik |
doi_str_mv | 10.1007/978-94-017-3338-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03587nmm a2200541zcb4500</leader><controlfield tag="001">BV042416351</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1997 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401733380</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-017-3338-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048147892</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-4789-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-017-3338-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)862532597</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042416351</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Miron, Radu</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Geometry of Higher-Order Lagrange Spaces</subfield><subfield code="b">Applications to Mechanics and Physics</subfield><subfield code="c">by Radu Miron</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 336 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Fundamental Theories of Physics, An International Book Series on The Fundamental Theories of Physics: Their Clarification, Development and Application</subfield><subfield code="v">82</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This monograph is mostly devoted to the problem of the geome trizing of Lagrangians which depend on higher order accelerations. It naturally prolongs the theme of the monograph "The Geometry of La grange spaces: Theory and Applications", written together with M. Anastasiei and published by Kluwer Academic Publishers in 1994. The existence of Lagrangians of order k > 1 has been contemplated by mechanicists and physicists for a long time. Einstein had grasped their presence in connection with the Brownian motion. They are also present in relativistic theories based on metrics which depend on speeds and accelerations of particles or in the Hamiltonian formulation of non linear systems given by Korteweg-de Vries equations. There resulted from here the methods to be adopted in their theoretical treatment. One is based on the variational problem involving the integral action of the Lagrangian. A second one is derived from the axioms of Analytical Mechanics involving the Poincare-Cartan forms. The geometrical methods based on the study of the geometries of higher order could invigorate the whole theory. This is the way adopted by us in defining and studying the Lagrange spaces of higher order. The problems raised by the geometrization of Lagrangians of order k > 1 investigated by many scholars: Ch. Ehresmann, P. Libermann, J. Pommaret; J.T. Synge, M. Crampin, P. Saunders; G.S. Asanov, P.Aringazin; I. Kolar, D. Krupka; M. de Leon, W. Sarlet, P. Cantrjin, H. Rund, W.M. Tulczyjew, A. Kawaguchi, K. Yano, K. Kondo, D.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of Variations and Optimal Control; Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optics, Optoelectronics, Plasmonics and Optical Devices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ordnung n</subfield><subfield code="0">(DE-588)4322729-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lagrange-Raum</subfield><subfield code="0">(DE-588)4458304-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lagrange-Raum</subfield><subfield code="0">(DE-588)4458304-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Ordnung n</subfield><subfield code="0">(DE-588)4322729-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-017-3338-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027851844</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042416351 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:59Z |
institution | BVB |
isbn | 9789401733380 9789048147892 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027851844 |
oclc_num | 862532597 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (XV, 336 p) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Fundamental Theories of Physics, An International Book Series on The Fundamental Theories of Physics: Their Clarification, Development and Application |
spelling | Miron, Radu Verfasser aut The Geometry of Higher-Order Lagrange Spaces Applications to Mechanics and Physics by Radu Miron Dordrecht Springer Netherlands 1997 1 Online-Ressource (XV, 336 p) txt rdacontent c rdamedia cr rdacarrier Fundamental Theories of Physics, An International Book Series on The Fundamental Theories of Physics: Their Clarification, Development and Application 82 This monograph is mostly devoted to the problem of the geome trizing of Lagrangians which depend on higher order accelerations. It naturally prolongs the theme of the monograph "The Geometry of La grange spaces: Theory and Applications", written together with M. Anastasiei and published by Kluwer Academic Publishers in 1994. The existence of Lagrangians of order k > 1 has been contemplated by mechanicists and physicists for a long time. Einstein had grasped their presence in connection with the Brownian motion. They are also present in relativistic theories based on metrics which depend on speeds and accelerations of particles or in the Hamiltonian formulation of non linear systems given by Korteweg-de Vries equations. There resulted from here the methods to be adopted in their theoretical treatment. One is based on the variational problem involving the integral action of the Lagrangian. A second one is derived from the axioms of Analytical Mechanics involving the Poincare-Cartan forms. The geometrical methods based on the study of the geometries of higher order could invigorate the whole theory. This is the way adopted by us in defining and studying the Lagrange spaces of higher order. The problems raised by the geometrization of Lagrangians of order k > 1 investigated by many scholars: Ch. Ehresmann, P. Libermann, J. Pommaret; J.T. Synge, M. Crampin, P. Saunders; G.S. Asanov, P.Aringazin; I. Kolar, D. Krupka; M. de Leon, W. Sarlet, P. Cantrjin, H. Rund, W.M. Tulczyjew, A. Kawaguchi, K. Yano, K. Kondo, D. Mathematics Global differential geometry Mathematical optimization Mechanics Differential Geometry Theoretical, Mathematical and Computational Physics Calculus of Variations and Optimal Control; Optimization Optics, Optoelectronics, Plasmonics and Optical Devices Mathematik Ordnung n (DE-588)4322729-6 gnd rswk-swf Lagrange-Raum (DE-588)4458304-7 gnd rswk-swf Lagrange-Raum (DE-588)4458304-7 s Ordnung n (DE-588)4322729-6 s 1\p DE-604 https://doi.org/10.1007/978-94-017-3338-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Miron, Radu The Geometry of Higher-Order Lagrange Spaces Applications to Mechanics and Physics Mathematics Global differential geometry Mathematical optimization Mechanics Differential Geometry Theoretical, Mathematical and Computational Physics Calculus of Variations and Optimal Control; Optimization Optics, Optoelectronics, Plasmonics and Optical Devices Mathematik Ordnung n (DE-588)4322729-6 gnd Lagrange-Raum (DE-588)4458304-7 gnd |
subject_GND | (DE-588)4322729-6 (DE-588)4458304-7 |
title | The Geometry of Higher-Order Lagrange Spaces Applications to Mechanics and Physics |
title_auth | The Geometry of Higher-Order Lagrange Spaces Applications to Mechanics and Physics |
title_exact_search | The Geometry of Higher-Order Lagrange Spaces Applications to Mechanics and Physics |
title_full | The Geometry of Higher-Order Lagrange Spaces Applications to Mechanics and Physics by Radu Miron |
title_fullStr | The Geometry of Higher-Order Lagrange Spaces Applications to Mechanics and Physics by Radu Miron |
title_full_unstemmed | The Geometry of Higher-Order Lagrange Spaces Applications to Mechanics and Physics by Radu Miron |
title_short | The Geometry of Higher-Order Lagrange Spaces |
title_sort | the geometry of higher order lagrange spaces applications to mechanics and physics |
title_sub | Applications to Mechanics and Physics |
topic | Mathematics Global differential geometry Mathematical optimization Mechanics Differential Geometry Theoretical, Mathematical and Computational Physics Calculus of Variations and Optimal Control; Optimization Optics, Optoelectronics, Plasmonics and Optical Devices Mathematik Ordnung n (DE-588)4322729-6 gnd Lagrange-Raum (DE-588)4458304-7 gnd |
topic_facet | Mathematics Global differential geometry Mathematical optimization Mechanics Differential Geometry Theoretical, Mathematical and Computational Physics Calculus of Variations and Optimal Control; Optimization Optics, Optoelectronics, Plasmonics and Optical Devices Mathematik Ordnung n Lagrange-Raum |
url | https://doi.org/10.1007/978-94-017-3338-0 |
work_keys_str_mv | AT mironradu thegeometryofhigherorderlagrangespacesapplicationstomechanicsandphysics |