Quantum Mechanics on Phase Space:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1996
|
Schriftenreihe: | Fundamental Theories of Physics, An International Book Series on The Fundamental Theories of Physics: Their Clarification, Development and Application
74 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In this monograph, we shall present a new mathematical formulation of quantum theory, clarify a number of discrepancies within the prior formulation of quantum theory, give new applications to experiments in physics, and extend the realm of application of quantum theory well beyond physics. Here, we motivate this new formulation and sketch how it developed. Since the publication of Dirac's famous book on quantum mechanics [Dirac, 1930] and von Neumann's classic text on the mathematical foundations of quantum mechanics two years later [von Neumann, 1932], there have appeared a number of lines of development, the intent of each being to enrich quantum theory by extra polating or even modifying the original basic structure. These lines of development have seemed to go in different directions, the major directions of which are identified here: First is the introduction of group theoretical methods [Weyl, 1928; Wigner, 1931] with the natural extension to coherent state theory [Klauder and Sudarshan, 1968; Peremolov, 1971]. The call for an axiomatic approach to physics [Hilbert, 1900; Sixth Problem] led to the development of quantum logic [Mackey, 1963; Jauch, 1968; Varadarajan, 1968, 1970; Piron, 1976; Beltrametti & Cassinelli, 1981], to the creation of the operational approach [Ludwig, 1983-85, 1985; Davies, 1976] with its application to quantum communication theory [Helstrom, 1976; Holevo, 1982), and to the development of the C* approach [Emch, 1972]. An approach through stochastic differential equations ("stochastic mechanics") was developed [Nelson, 1964, 1966, 1967] |
Beschreibung: | 1 Online-Ressource (XVI, 672 p) |
ISBN: | 9789401728300 9789048146390 |
DOI: | 10.1007/978-94-017-2830-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042416329 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s1996 |||| o||u| ||||||eng d | ||
020 | |a 9789401728300 |c Online |9 978-94-017-2830-0 | ||
020 | |a 9789048146390 |c Print |9 978-90-481-4639-0 | ||
024 | 7 | |a 10.1007/978-94-017-2830-0 |2 doi | |
035 | |a (OCoLC)864076772 | ||
035 | |a (DE-599)BVBBV042416329 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 530.12 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Schroeck, Franklin E. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Quantum Mechanics on Phase Space |c by Franklin E. Schroeck |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1996 | |
300 | |a 1 Online-Ressource (XVI, 672 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Fundamental Theories of Physics, An International Book Series on The Fundamental Theories of Physics: Their Clarification, Development and Application |v 74 | |
500 | |a In this monograph, we shall present a new mathematical formulation of quantum theory, clarify a number of discrepancies within the prior formulation of quantum theory, give new applications to experiments in physics, and extend the realm of application of quantum theory well beyond physics. Here, we motivate this new formulation and sketch how it developed. Since the publication of Dirac's famous book on quantum mechanics [Dirac, 1930] and von Neumann's classic text on the mathematical foundations of quantum mechanics two years later [von Neumann, 1932], there have appeared a number of lines of development, the intent of each being to enrich quantum theory by extra polating or even modifying the original basic structure. These lines of development have seemed to go in different directions, the major directions of which are identified here: First is the introduction of group theoretical methods [Weyl, 1928; Wigner, 1931] with the natural extension to coherent state theory [Klauder and Sudarshan, 1968; Peremolov, 1971]. The call for an axiomatic approach to physics [Hilbert, 1900; Sixth Problem] led to the development of quantum logic [Mackey, 1963; Jauch, 1968; Varadarajan, 1968, 1970; Piron, 1976; Beltrametti & Cassinelli, 1981], to the creation of the operational approach [Ludwig, 1983-85, 1985; Davies, 1976] with its application to quantum communication theory [Helstrom, 1976; Holevo, 1982), and to the development of the C* approach [Emch, 1972]. An approach through stochastic differential equations ("stochastic mechanics") was developed [Nelson, 1964, 1966, 1967] | ||
650 | 4 | |a Physics | |
650 | 4 | |a Neurosciences | |
650 | 4 | |a Radiology, Medical | |
650 | 4 | |a Topological Groups | |
650 | 4 | |a Global analysis | |
650 | 4 | |a Quantum theory | |
650 | 4 | |a Quantum Physics | |
650 | 4 | |a Global Analysis and Analysis on Manifolds | |
650 | 4 | |a Topological Groups, Lie Groups | |
650 | 4 | |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences | |
650 | 4 | |a Imaging / Radiology | |
650 | 4 | |a Quantentheorie | |
650 | 0 | 7 | |a Phasenraum |0 (DE-588)4139912-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenmechanik |0 (DE-588)4047989-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Phasenraum |0 (DE-588)4139912-2 |D s |
689 | 0 | 1 | |a Quantenmechanik |0 (DE-588)4047989-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-017-2830-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027851822 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153084651241472 |
---|---|
any_adam_object | |
author | Schroeck, Franklin E. |
author_facet | Schroeck, Franklin E. |
author_role | aut |
author_sort | Schroeck, Franklin E. |
author_variant | f e s fe fes |
building | Verbundindex |
bvnumber | BV042416329 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)864076772 (DE-599)BVBBV042416329 |
dewey-full | 530.12 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.12 |
dewey-search | 530.12 |
dewey-sort | 3530.12 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-94-017-2830-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03688nmm a2200577zcb4500</leader><controlfield tag="001">BV042416329</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401728300</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-017-2830-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048146390</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-4639-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-017-2830-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864076772</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042416329</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.12</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schroeck, Franklin E.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum Mechanics on Phase Space</subfield><subfield code="c">by Franklin E. Schroeck</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVI, 672 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Fundamental Theories of Physics, An International Book Series on The Fundamental Theories of Physics: Their Clarification, Development and Application</subfield><subfield code="v">74</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In this monograph, we shall present a new mathematical formulation of quantum theory, clarify a number of discrepancies within the prior formulation of quantum theory, give new applications to experiments in physics, and extend the realm of application of quantum theory well beyond physics. Here, we motivate this new formulation and sketch how it developed. Since the publication of Dirac's famous book on quantum mechanics [Dirac, 1930] and von Neumann's classic text on the mathematical foundations of quantum mechanics two years later [von Neumann, 1932], there have appeared a number of lines of development, the intent of each being to enrich quantum theory by extra polating or even modifying the original basic structure. These lines of development have seemed to go in different directions, the major directions of which are identified here: First is the introduction of group theoretical methods [Weyl, 1928; Wigner, 1931] with the natural extension to coherent state theory [Klauder and Sudarshan, 1968; Peremolov, 1971]. The call for an axiomatic approach to physics [Hilbert, 1900; Sixth Problem] led to the development of quantum logic [Mackey, 1963; Jauch, 1968; Varadarajan, 1968, 1970; Piron, 1976; Beltrametti & Cassinelli, 1981], to the creation of the operational approach [Ludwig, 1983-85, 1985; Davies, 1976] with its application to quantum communication theory [Helstrom, 1976; Holevo, 1982), and to the development of the C* approach [Emch, 1972]. An approach through stochastic differential equations ("stochastic mechanics") was developed [Nelson, 1964, 1966, 1967]</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neurosciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiology, Medical</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global Analysis and Analysis on Manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups, Lie Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Imaging / Radiology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Phasenraum</subfield><subfield code="0">(DE-588)4139912-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Phasenraum</subfield><subfield code="0">(DE-588)4139912-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-017-2830-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027851822</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042416329 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:59Z |
institution | BVB |
isbn | 9789401728300 9789048146390 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027851822 |
oclc_num | 864076772 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (XVI, 672 p) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Fundamental Theories of Physics, An International Book Series on The Fundamental Theories of Physics: Their Clarification, Development and Application |
spelling | Schroeck, Franklin E. Verfasser aut Quantum Mechanics on Phase Space by Franklin E. Schroeck Dordrecht Springer Netherlands 1996 1 Online-Ressource (XVI, 672 p) txt rdacontent c rdamedia cr rdacarrier Fundamental Theories of Physics, An International Book Series on The Fundamental Theories of Physics: Their Clarification, Development and Application 74 In this monograph, we shall present a new mathematical formulation of quantum theory, clarify a number of discrepancies within the prior formulation of quantum theory, give new applications to experiments in physics, and extend the realm of application of quantum theory well beyond physics. Here, we motivate this new formulation and sketch how it developed. Since the publication of Dirac's famous book on quantum mechanics [Dirac, 1930] and von Neumann's classic text on the mathematical foundations of quantum mechanics two years later [von Neumann, 1932], there have appeared a number of lines of development, the intent of each being to enrich quantum theory by extra polating or even modifying the original basic structure. These lines of development have seemed to go in different directions, the major directions of which are identified here: First is the introduction of group theoretical methods [Weyl, 1928; Wigner, 1931] with the natural extension to coherent state theory [Klauder and Sudarshan, 1968; Peremolov, 1971]. The call for an axiomatic approach to physics [Hilbert, 1900; Sixth Problem] led to the development of quantum logic [Mackey, 1963; Jauch, 1968; Varadarajan, 1968, 1970; Piron, 1976; Beltrametti & Cassinelli, 1981], to the creation of the operational approach [Ludwig, 1983-85, 1985; Davies, 1976] with its application to quantum communication theory [Helstrom, 1976; Holevo, 1982), and to the development of the C* approach [Emch, 1972]. An approach through stochastic differential equations ("stochastic mechanics") was developed [Nelson, 1964, 1966, 1967] Physics Neurosciences Radiology, Medical Topological Groups Global analysis Quantum theory Quantum Physics Global Analysis and Analysis on Manifolds Topological Groups, Lie Groups Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences Imaging / Radiology Quantentheorie Phasenraum (DE-588)4139912-2 gnd rswk-swf Quantenmechanik (DE-588)4047989-4 gnd rswk-swf Phasenraum (DE-588)4139912-2 s Quantenmechanik (DE-588)4047989-4 s 1\p DE-604 https://doi.org/10.1007/978-94-017-2830-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Schroeck, Franklin E. Quantum Mechanics on Phase Space Physics Neurosciences Radiology, Medical Topological Groups Global analysis Quantum theory Quantum Physics Global Analysis and Analysis on Manifolds Topological Groups, Lie Groups Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences Imaging / Radiology Quantentheorie Phasenraum (DE-588)4139912-2 gnd Quantenmechanik (DE-588)4047989-4 gnd |
subject_GND | (DE-588)4139912-2 (DE-588)4047989-4 |
title | Quantum Mechanics on Phase Space |
title_auth | Quantum Mechanics on Phase Space |
title_exact_search | Quantum Mechanics on Phase Space |
title_full | Quantum Mechanics on Phase Space by Franklin E. Schroeck |
title_fullStr | Quantum Mechanics on Phase Space by Franklin E. Schroeck |
title_full_unstemmed | Quantum Mechanics on Phase Space by Franklin E. Schroeck |
title_short | Quantum Mechanics on Phase Space |
title_sort | quantum mechanics on phase space |
topic | Physics Neurosciences Radiology, Medical Topological Groups Global analysis Quantum theory Quantum Physics Global Analysis and Analysis on Manifolds Topological Groups, Lie Groups Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences Imaging / Radiology Quantentheorie Phasenraum (DE-588)4139912-2 gnd Quantenmechanik (DE-588)4047989-4 gnd |
topic_facet | Physics Neurosciences Radiology, Medical Topological Groups Global analysis Quantum theory Quantum Physics Global Analysis and Analysis on Manifolds Topological Groups, Lie Groups Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences Imaging / Radiology Quantentheorie Phasenraum Quantenmechanik |
url | https://doi.org/10.1007/978-94-017-2830-0 |
work_keys_str_mv | AT schroeckfrankline quantummechanicsonphasespace |