Magnetohydrodynamics: Waves and Shock Waves in Curved Space-Time:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1994
|
Schriftenreihe: | Mathematical Physics Studies
14 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | For seventy years, we have known that Einstein's theory is essentially a theory of propagation of waves for the gravitational field. Confusion enters, however, through the fact that the word wave, in physics, implies sometimes repetition and sometimes not. This confusion is often increased by he use of Fourier transforms, by which a disturbanse which appears to be without repetition is resolved into periodic wave-trains with all frequencies. But, in a general curved space-time, we have nothing corresponding to Fourier transforms. Here, we consider systematically waves corresponding to the propagation of discontinuities of physical quantities describing either fields (essentially electromagnetic fields and gravitational field), or the motion of a fluid, or together, in magnetohydrodynamics, the changes in time of a field and of a fluid. The main equations, for the different studied phenomena, constitute a hyperbolic system and the study of a formal Cauchy problem is possible. We call ordinary waves the case in which the derivative of superior order appearing in the system are discontinuous at the traverse of a hypersurface, the wave front ; we call shock waves the case where the derivatives of an order inferior by one are discontinuous at the traverse of a wave front. XI xii PREFACE From 1950, many well-known scientits (Taub, Synge, Choquet-B ruhat, etc.) have studied the corresponding equations for different physical phenomena : systems associated to the electromagnetic and gravitational fields, to hydrodynamics and to magnetohydrodynamics |
Beschreibung: | 1 Online-Ressource (XII, 280 p) |
ISBN: | 9789401721264 9789048143900 |
DOI: | 10.1007/978-94-017-2126-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042416300 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s1994 |||| o||u| ||||||eng d | ||
020 | |a 9789401721264 |c Online |9 978-94-017-2126-4 | ||
020 | |a 9789048143900 |c Print |9 978-90-481-4390-0 | ||
024 | 7 | |a 10.1007/978-94-017-2126-4 |2 doi | |
035 | |a (OCoLC)864021655 | ||
035 | |a (DE-599)BVBBV042416300 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 530.1 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Lichnerowicz, André |e Verfasser |4 aut | |
245 | 1 | 0 | |a Magnetohydrodynamics: Waves and Shock Waves in Curved Space-Time |c by André Lichnerowicz |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1994 | |
300 | |a 1 Online-Ressource (XII, 280 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematical Physics Studies |v 14 | |
500 | |a For seventy years, we have known that Einstein's theory is essentially a theory of propagation of waves for the gravitational field. Confusion enters, however, through the fact that the word wave, in physics, implies sometimes repetition and sometimes not. This confusion is often increased by he use of Fourier transforms, by which a disturbanse which appears to be without repetition is resolved into periodic wave-trains with all frequencies. But, in a general curved space-time, we have nothing corresponding to Fourier transforms. Here, we consider systematically waves corresponding to the propagation of discontinuities of physical quantities describing either fields (essentially electromagnetic fields and gravitational field), or the motion of a fluid, or together, in magnetohydrodynamics, the changes in time of a field and of a fluid. The main equations, for the different studied phenomena, constitute a hyperbolic system and the study of a formal Cauchy problem is possible. We call ordinary waves the case in which the derivative of superior order appearing in the system are discontinuous at the traverse of a hypersurface, the wave front ; we call shock waves the case where the derivatives of an order inferior by one are discontinuous at the traverse of a wave front. XI xii PREFACE From 1950, many well-known scientits (Taub, Synge, Choquet-B ruhat, etc.) have studied the corresponding equations for different physical phenomena : systems associated to the electromagnetic and gravitational fields, to hydrodynamics and to magnetohydrodynamics | ||
650 | 4 | |a Physics | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Astrophysics and Astroparticles | |
650 | 4 | |a Partial Differential Equations | |
650 | 0 | 7 | |a Allgemeine Relativitätstheorie |0 (DE-588)4112491-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Magnetohydrodynamik |0 (DE-588)4130803-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Magnetohydrodynamik |0 (DE-588)4130803-7 |D s |
689 | 0 | 1 | |a Allgemeine Relativitätstheorie |0 (DE-588)4112491-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-017-2126-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027851793 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153084576792576 |
---|---|
any_adam_object | |
author | Lichnerowicz, André |
author_facet | Lichnerowicz, André |
author_role | aut |
author_sort | Lichnerowicz, André |
author_variant | a l al |
building | Verbundindex |
bvnumber | BV042416300 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)864021655 (DE-599)BVBBV042416300 |
dewey-full | 530.1 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.1 |
dewey-search | 530.1 |
dewey-sort | 3530.1 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-94-017-2126-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03360nmm a2200493zcb4500</leader><controlfield tag="001">BV042416300</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401721264</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-017-2126-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048143900</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-4390-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-017-2126-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864021655</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042416300</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lichnerowicz, André</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Magnetohydrodynamics: Waves and Shock Waves in Curved Space-Time</subfield><subfield code="c">by André Lichnerowicz</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 280 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematical Physics Studies</subfield><subfield code="v">14</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">For seventy years, we have known that Einstein's theory is essentially a theory of propagation of waves for the gravitational field. Confusion enters, however, through the fact that the word wave, in physics, implies sometimes repetition and sometimes not. This confusion is often increased by he use of Fourier transforms, by which a disturbanse which appears to be without repetition is resolved into periodic wave-trains with all frequencies. But, in a general curved space-time, we have nothing corresponding to Fourier transforms. Here, we consider systematically waves corresponding to the propagation of discontinuities of physical quantities describing either fields (essentially electromagnetic fields and gravitational field), or the motion of a fluid, or together, in magnetohydrodynamics, the changes in time of a field and of a fluid. The main equations, for the different studied phenomena, constitute a hyperbolic system and the study of a formal Cauchy problem is possible. We call ordinary waves the case in which the derivative of superior order appearing in the system are discontinuous at the traverse of a hypersurface, the wave front ; we call shock waves the case where the derivatives of an order inferior by one are discontinuous at the traverse of a wave front. XI xii PREFACE From 1950, many well-known scientits (Taub, Synge, Choquet-B ruhat, etc.) have studied the corresponding equations for different physical phenomena : systems associated to the electromagnetic and gravitational fields, to hydrodynamics and to magnetohydrodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Astrophysics and Astroparticles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Allgemeine Relativitätstheorie</subfield><subfield code="0">(DE-588)4112491-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Magnetohydrodynamik</subfield><subfield code="0">(DE-588)4130803-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Magnetohydrodynamik</subfield><subfield code="0">(DE-588)4130803-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Allgemeine Relativitätstheorie</subfield><subfield code="0">(DE-588)4112491-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-017-2126-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027851793</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042416300 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:59Z |
institution | BVB |
isbn | 9789401721264 9789048143900 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027851793 |
oclc_num | 864021655 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (XII, 280 p) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Mathematical Physics Studies |
spelling | Lichnerowicz, André Verfasser aut Magnetohydrodynamics: Waves and Shock Waves in Curved Space-Time by André Lichnerowicz Dordrecht Springer Netherlands 1994 1 Online-Ressource (XII, 280 p) txt rdacontent c rdamedia cr rdacarrier Mathematical Physics Studies 14 For seventy years, we have known that Einstein's theory is essentially a theory of propagation of waves for the gravitational field. Confusion enters, however, through the fact that the word wave, in physics, implies sometimes repetition and sometimes not. This confusion is often increased by he use of Fourier transforms, by which a disturbanse which appears to be without repetition is resolved into periodic wave-trains with all frequencies. But, in a general curved space-time, we have nothing corresponding to Fourier transforms. Here, we consider systematically waves corresponding to the propagation of discontinuities of physical quantities describing either fields (essentially electromagnetic fields and gravitational field), or the motion of a fluid, or together, in magnetohydrodynamics, the changes in time of a field and of a fluid. The main equations, for the different studied phenomena, constitute a hyperbolic system and the study of a formal Cauchy problem is possible. We call ordinary waves the case in which the derivative of superior order appearing in the system are discontinuous at the traverse of a hypersurface, the wave front ; we call shock waves the case where the derivatives of an order inferior by one are discontinuous at the traverse of a wave front. XI xii PREFACE From 1950, many well-known scientits (Taub, Synge, Choquet-B ruhat, etc.) have studied the corresponding equations for different physical phenomena : systems associated to the electromagnetic and gravitational fields, to hydrodynamics and to magnetohydrodynamics Physics Differential equations, partial Theoretical, Mathematical and Computational Physics Astrophysics and Astroparticles Partial Differential Equations Allgemeine Relativitätstheorie (DE-588)4112491-1 gnd rswk-swf Magnetohydrodynamik (DE-588)4130803-7 gnd rswk-swf Magnetohydrodynamik (DE-588)4130803-7 s Allgemeine Relativitätstheorie (DE-588)4112491-1 s 1\p DE-604 https://doi.org/10.1007/978-94-017-2126-4 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Lichnerowicz, André Magnetohydrodynamics: Waves and Shock Waves in Curved Space-Time Physics Differential equations, partial Theoretical, Mathematical and Computational Physics Astrophysics and Astroparticles Partial Differential Equations Allgemeine Relativitätstheorie (DE-588)4112491-1 gnd Magnetohydrodynamik (DE-588)4130803-7 gnd |
subject_GND | (DE-588)4112491-1 (DE-588)4130803-7 |
title | Magnetohydrodynamics: Waves and Shock Waves in Curved Space-Time |
title_auth | Magnetohydrodynamics: Waves and Shock Waves in Curved Space-Time |
title_exact_search | Magnetohydrodynamics: Waves and Shock Waves in Curved Space-Time |
title_full | Magnetohydrodynamics: Waves and Shock Waves in Curved Space-Time by André Lichnerowicz |
title_fullStr | Magnetohydrodynamics: Waves and Shock Waves in Curved Space-Time by André Lichnerowicz |
title_full_unstemmed | Magnetohydrodynamics: Waves and Shock Waves in Curved Space-Time by André Lichnerowicz |
title_short | Magnetohydrodynamics: Waves and Shock Waves in Curved Space-Time |
title_sort | magnetohydrodynamics waves and shock waves in curved space time |
topic | Physics Differential equations, partial Theoretical, Mathematical and Computational Physics Astrophysics and Astroparticles Partial Differential Equations Allgemeine Relativitätstheorie (DE-588)4112491-1 gnd Magnetohydrodynamik (DE-588)4130803-7 gnd |
topic_facet | Physics Differential equations, partial Theoretical, Mathematical and Computational Physics Astrophysics and Astroparticles Partial Differential Equations Allgemeine Relativitätstheorie Magnetohydrodynamik |
url | https://doi.org/10.1007/978-94-017-2126-4 |
work_keys_str_mv | AT lichnerowiczandre magnetohydrodynamicswavesandshockwavesincurvedspacetime |