Geometry, Topology and Quantum Field Theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
2003
|
Schriftenreihe: | Fundamental Theories of Physics
130 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This is a monograph on geometrical and topological features which arise in quantum field theory. It is well known that when a chiral fermion interacts with a gauge field we have chiral anomaly which corresponds to the fact that divergence of the axial vector current does not vanish. It is observed that this is related to certain topological features associated with the fermion and leads to the realization of the topological origin of fermion number as well as the Berry phase. The role of gauge fields in the quantization procedure has its implications in these topological features of a fermion and helps us to consider a massive fermion as a soliton (skyrrnion). In this formalism chiral anomaly is found to be responsible for mass generation. This has its relevance in electroweak theory where it is observed that weak interaction gauge bosons attain mass topologically. The geometrical feature of a skyrmion also helps us to realize the internal symmetry of hadrons from reflection group. Finally it has been shown that noncommutative geometry where the space time manifold is taken to be X = M x Zz has its relevance in the description of a massive 4 fermion as a skyrmion when the discrete space is considered as the internal space and the symmetry breaking leads to chiral anomaly. In chap. l preliminary mathematical formulations related to the spinor structure have been discussed. In chap |
Beschreibung: | 1 Online-Ressource (XI, 220 p) |
ISBN: | 9789401716970 9789048163380 |
DOI: | 10.1007/978-94-017-1697-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042416288 | ||
003 | DE-604 | ||
005 | 20180216 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s2003 |||| o||u| ||||||eng d | ||
020 | |a 9789401716970 |c Online |9 978-94-017-1697-0 | ||
020 | |a 9789048163380 |c Print |9 978-90-481-6338-0 | ||
024 | 7 | |a 10.1007/978-94-017-1697-0 |2 doi | |
035 | |a (OCoLC)863973725 | ||
035 | |a (DE-599)BVBBV042416288 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 530.12 |2 23 | |
084 | |a PHY 023f |2 stub | ||
084 | |a PHY 000 |2 stub | ||
084 | |a PHY 014f |2 stub | ||
100 | 1 | |a Bandyopadhyay, Pratul |e Verfasser |4 aut | |
245 | 1 | 0 | |a Geometry, Topology and Quantum Field Theory |c by Pratul Bandyopadhyay |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 2003 | |
300 | |a 1 Online-Ressource (XI, 220 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Fundamental Theories of Physics |v 130 | |
500 | |a This is a monograph on geometrical and topological features which arise in quantum field theory. It is well known that when a chiral fermion interacts with a gauge field we have chiral anomaly which corresponds to the fact that divergence of the axial vector current does not vanish. It is observed that this is related to certain topological features associated with the fermion and leads to the realization of the topological origin of fermion number as well as the Berry phase. The role of gauge fields in the quantization procedure has its implications in these topological features of a fermion and helps us to consider a massive fermion as a soliton (skyrrnion). In this formalism chiral anomaly is found to be responsible for mass generation. This has its relevance in electroweak theory where it is observed that weak interaction gauge bosons attain mass topologically. The geometrical feature of a skyrmion also helps us to realize the internal symmetry of hadrons from reflection group. Finally it has been shown that noncommutative geometry where the space time manifold is taken to be X = M x Zz has its relevance in the description of a massive 4 fermion as a skyrmion when the discrete space is considered as the internal space and the symmetry breaking leads to chiral anomaly. In chap. l preliminary mathematical formulations related to the spinor structure have been discussed. In chap | ||
650 | 4 | |a Physics | |
650 | 4 | |a Global analysis | |
650 | 4 | |a Global differential geometry | |
650 | 4 | |a Quantum theory | |
650 | 4 | |a Nuclear physics | |
650 | 4 | |a Quantum Physics | |
650 | 4 | |a Elementary Particles, Quantum Field Theory | |
650 | 4 | |a Nuclear Physics, Heavy Ions, Hadrons | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Global Analysis and Analysis on Manifolds | |
650 | 4 | |a Quantentheorie | |
650 | 0 | 7 | |a Topologie |0 (DE-588)4060425-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrische Quantisierung |0 (DE-588)4156720-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologische Quantenfeldtheorie |0 (DE-588)4426450-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |D s |
689 | 0 | 1 | |a Topologie |0 (DE-588)4060425-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Geometrische Quantisierung |0 (DE-588)4156720-1 |D s |
689 | 1 | 1 | |a Topologische Quantenfeldtheorie |0 (DE-588)4426450-1 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-017-1697-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027851781 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153084546383872 |
---|---|
any_adam_object | |
author | Bandyopadhyay, Pratul |
author_facet | Bandyopadhyay, Pratul |
author_role | aut |
author_sort | Bandyopadhyay, Pratul |
author_variant | p b pb |
building | Verbundindex |
bvnumber | BV042416288 |
classification_tum | PHY 023f PHY 000 PHY 014f |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)863973725 (DE-599)BVBBV042416288 |
dewey-full | 530.12 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.12 |
dewey-search | 530.12 |
dewey-sort | 3530.12 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-94-017-1697-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03715nmm a2200649zcb4500</leader><controlfield tag="001">BV042416288</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180216 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401716970</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-017-1697-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048163380</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-6338-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-017-1697-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863973725</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042416288</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.12</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 023f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 014f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bandyopadhyay, Pratul</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometry, Topology and Quantum Field Theory</subfield><subfield code="c">by Pratul Bandyopadhyay</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 220 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Fundamental Theories of Physics</subfield><subfield code="v">130</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This is a monograph on geometrical and topological features which arise in quantum field theory. It is well known that when a chiral fermion interacts with a gauge field we have chiral anomaly which corresponds to the fact that divergence of the axial vector current does not vanish. It is observed that this is related to certain topological features associated with the fermion and leads to the realization of the topological origin of fermion number as well as the Berry phase. The role of gauge fields in the quantization procedure has its implications in these topological features of a fermion and helps us to consider a massive fermion as a soliton (skyrrnion). In this formalism chiral anomaly is found to be responsible for mass generation. This has its relevance in electroweak theory where it is observed that weak interaction gauge bosons attain mass topologically. The geometrical feature of a skyrmion also helps us to realize the internal symmetry of hadrons from reflection group. Finally it has been shown that noncommutative geometry where the space time manifold is taken to be X = M x Zz has its relevance in the description of a massive 4 fermion as a skyrmion when the discrete space is considered as the internal space and the symmetry breaking leads to chiral anomaly. In chap. l preliminary mathematical formulations related to the spinor structure have been discussed. In chap</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nuclear physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elementary Particles, Quantum Field Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nuclear Physics, Heavy Ions, Hadrons</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global Analysis and Analysis on Manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Quantisierung</subfield><subfield code="0">(DE-588)4156720-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologische Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4426450-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Geometrische Quantisierung</subfield><subfield code="0">(DE-588)4156720-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Topologische Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4426450-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-017-1697-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027851781</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042416288 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:59Z |
institution | BVB |
isbn | 9789401716970 9789048163380 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027851781 |
oclc_num | 863973725 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (XI, 220 p) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Fundamental Theories of Physics |
spelling | Bandyopadhyay, Pratul Verfasser aut Geometry, Topology and Quantum Field Theory by Pratul Bandyopadhyay Dordrecht Springer Netherlands 2003 1 Online-Ressource (XI, 220 p) txt rdacontent c rdamedia cr rdacarrier Fundamental Theories of Physics 130 This is a monograph on geometrical and topological features which arise in quantum field theory. It is well known that when a chiral fermion interacts with a gauge field we have chiral anomaly which corresponds to the fact that divergence of the axial vector current does not vanish. It is observed that this is related to certain topological features associated with the fermion and leads to the realization of the topological origin of fermion number as well as the Berry phase. The role of gauge fields in the quantization procedure has its implications in these topological features of a fermion and helps us to consider a massive fermion as a soliton (skyrrnion). In this formalism chiral anomaly is found to be responsible for mass generation. This has its relevance in electroweak theory where it is observed that weak interaction gauge bosons attain mass topologically. The geometrical feature of a skyrmion also helps us to realize the internal symmetry of hadrons from reflection group. Finally it has been shown that noncommutative geometry where the space time manifold is taken to be X = M x Zz has its relevance in the description of a massive 4 fermion as a skyrmion when the discrete space is considered as the internal space and the symmetry breaking leads to chiral anomaly. In chap. l preliminary mathematical formulations related to the spinor structure have been discussed. In chap Physics Global analysis Global differential geometry Quantum theory Nuclear physics Quantum Physics Elementary Particles, Quantum Field Theory Nuclear Physics, Heavy Ions, Hadrons Differential Geometry Global Analysis and Analysis on Manifolds Quantentheorie Topologie (DE-588)4060425-1 gnd rswk-swf Geometrische Quantisierung (DE-588)4156720-1 gnd rswk-swf Quantenfeldtheorie (DE-588)4047984-5 gnd rswk-swf Topologische Quantenfeldtheorie (DE-588)4426450-1 gnd rswk-swf Quantenfeldtheorie (DE-588)4047984-5 s Topologie (DE-588)4060425-1 s DE-604 Geometrische Quantisierung (DE-588)4156720-1 s Topologische Quantenfeldtheorie (DE-588)4426450-1 s 1\p DE-604 https://doi.org/10.1007/978-94-017-1697-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Bandyopadhyay, Pratul Geometry, Topology and Quantum Field Theory Physics Global analysis Global differential geometry Quantum theory Nuclear physics Quantum Physics Elementary Particles, Quantum Field Theory Nuclear Physics, Heavy Ions, Hadrons Differential Geometry Global Analysis and Analysis on Manifolds Quantentheorie Topologie (DE-588)4060425-1 gnd Geometrische Quantisierung (DE-588)4156720-1 gnd Quantenfeldtheorie (DE-588)4047984-5 gnd Topologische Quantenfeldtheorie (DE-588)4426450-1 gnd |
subject_GND | (DE-588)4060425-1 (DE-588)4156720-1 (DE-588)4047984-5 (DE-588)4426450-1 |
title | Geometry, Topology and Quantum Field Theory |
title_auth | Geometry, Topology and Quantum Field Theory |
title_exact_search | Geometry, Topology and Quantum Field Theory |
title_full | Geometry, Topology and Quantum Field Theory by Pratul Bandyopadhyay |
title_fullStr | Geometry, Topology and Quantum Field Theory by Pratul Bandyopadhyay |
title_full_unstemmed | Geometry, Topology and Quantum Field Theory by Pratul Bandyopadhyay |
title_short | Geometry, Topology and Quantum Field Theory |
title_sort | geometry topology and quantum field theory |
topic | Physics Global analysis Global differential geometry Quantum theory Nuclear physics Quantum Physics Elementary Particles, Quantum Field Theory Nuclear Physics, Heavy Ions, Hadrons Differential Geometry Global Analysis and Analysis on Manifolds Quantentheorie Topologie (DE-588)4060425-1 gnd Geometrische Quantisierung (DE-588)4156720-1 gnd Quantenfeldtheorie (DE-588)4047984-5 gnd Topologische Quantenfeldtheorie (DE-588)4426450-1 gnd |
topic_facet | Physics Global analysis Global differential geometry Quantum theory Nuclear physics Quantum Physics Elementary Particles, Quantum Field Theory Nuclear Physics, Heavy Ions, Hadrons Differential Geometry Global Analysis and Analysis on Manifolds Quantentheorie Topologie Geometrische Quantisierung Quantenfeldtheorie Topologische Quantenfeldtheorie |
url | https://doi.org/10.1007/978-94-017-1697-0 |
work_keys_str_mv | AT bandyopadhyaypratul geometrytopologyandquantumfieldtheory |