Solving Frontier Problems of Physics: The Decomposition Method:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1994
|
Schriftenreihe: | Fundamental Theories of Physics, An International Book Series on The Fundamental Theories of Physics: Their Clarification, Development and Application
60 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The Adomian decomposition method enables the accurate and efficient analytic solution of nonlinear ordinary or partial differential equations without the need to resort to linearization or perturbation approaches. It unifies the treatment of linear and nonlinear, ordinary or partial differential equations, or systems of such equations, into a single basic method, which is applicable to both initial and boundary-value problems. This volume deals with the application of this method to many problems of physics, including some frontier problems which have previously required much more computationally-intensive approaches. The opening chapters deal with various fundamental aspects of the decomposition method. Subsequent chapters deal with the application of the method to nonlinear oscillatory systems in physics, the Duffing equation, boundary-value problems with closed irregular contours or surfaces, and other frontier areas. The potential application of this method to a wide range of problems in diverse disciplines such as biology, hydrology, semiconductor physics, wave propagation, etc., is highlighted. For researchers and graduate students of physics, applied mathematics and engineering, whose work involves mathematical modelling and the quantitative solution of systems of equations |
Beschreibung: | 1 Online-Ressource (XIV, 354 p) |
ISBN: | 9789401582896 9789048143528 |
DOI: | 10.1007/978-94-015-8289-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042416168 | ||
003 | DE-604 | ||
005 | 20150730 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s1994 |||| o||u| ||||||eng d | ||
020 | |a 9789401582896 |c Online |9 978-94-015-8289-6 | ||
020 | |a 9789048143528 |c Print |9 978-90-481-4352-8 | ||
024 | 7 | |a 10.1007/978-94-015-8289-6 |2 doi | |
035 | |a (OCoLC)860188526 | ||
035 | |a (DE-599)BVBBV042416168 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 530.1 |2 23 | |
084 | |a PHY 013f |2 stub | ||
084 | |a PHY 000 |2 stub | ||
084 | |a MAT 469f |2 stub | ||
100 | 1 | |a Adomian, George |e Verfasser |4 aut | |
245 | 1 | 0 | |a Solving Frontier Problems of Physics: The Decomposition Method |c by George Adomian |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1994 | |
300 | |a 1 Online-Ressource (XIV, 354 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Fundamental Theories of Physics, An International Book Series on The Fundamental Theories of Physics: Their Clarification, Development and Application |v 60 | |
500 | |a The Adomian decomposition method enables the accurate and efficient analytic solution of nonlinear ordinary or partial differential equations without the need to resort to linearization or perturbation approaches. It unifies the treatment of linear and nonlinear, ordinary or partial differential equations, or systems of such equations, into a single basic method, which is applicable to both initial and boundary-value problems. This volume deals with the application of this method to many problems of physics, including some frontier problems which have previously required much more computationally-intensive approaches. The opening chapters deal with various fundamental aspects of the decomposition method. Subsequent chapters deal with the application of the method to nonlinear oscillatory systems in physics, the Duffing equation, boundary-value problems with closed irregular contours or surfaces, and other frontier areas. The potential application of this method to a wide range of problems in diverse disciplines such as biology, hydrology, semiconductor physics, wave propagation, etc., is highlighted. For researchers and graduate students of physics, applied mathematics and engineering, whose work involves mathematical modelling and the quantitative solution of systems of equations | ||
650 | 4 | |a Physics | |
650 | 4 | |a Differential Equations | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Ordinary Differential Equations | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Zerlegung |g Mathematik |0 (DE-588)4190746-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Dekomposition |0 (DE-588)4149030-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Dekomposition |0 (DE-588)4149030-7 |D s |
689 | 0 | 1 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 1 | 1 | |a Zerlegung |g Mathematik |0 (DE-588)4190746-2 |D s |
689 | 1 | |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-015-8289-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027851661 |
Datensatz im Suchindex
_version_ | 1804153084263268352 |
---|---|
any_adam_object | |
author | Adomian, George |
author_facet | Adomian, George |
author_role | aut |
author_sort | Adomian, George |
author_variant | g a ga |
building | Verbundindex |
bvnumber | BV042416168 |
classification_tum | PHY 013f PHY 000 MAT 469f |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)860188526 (DE-599)BVBBV042416168 |
dewey-full | 530.1 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.1 |
dewey-search | 530.1 |
dewey-sort | 3530.1 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
doi_str_mv | 10.1007/978-94-015-8289-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03495nmm a2200601zcb4500</leader><controlfield tag="001">BV042416168</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150730 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401582896</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-015-8289-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048143528</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-4352-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-015-8289-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)860188526</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042416168</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 013f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 469f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Adomian, George</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Solving Frontier Problems of Physics: The Decomposition Method</subfield><subfield code="c">by George Adomian</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 354 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Fundamental Theories of Physics, An International Book Series on The Fundamental Theories of Physics: Their Clarification, Development and Application</subfield><subfield code="v">60</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The Adomian decomposition method enables the accurate and efficient analytic solution of nonlinear ordinary or partial differential equations without the need to resort to linearization or perturbation approaches. It unifies the treatment of linear and nonlinear, ordinary or partial differential equations, or systems of such equations, into a single basic method, which is applicable to both initial and boundary-value problems. This volume deals with the application of this method to many problems of physics, including some frontier problems which have previously required much more computationally-intensive approaches. The opening chapters deal with various fundamental aspects of the decomposition method. Subsequent chapters deal with the application of the method to nonlinear oscillatory systems in physics, the Duffing equation, boundary-value problems with closed irregular contours or surfaces, and other frontier areas. The potential application of this method to a wide range of problems in diverse disciplines such as biology, hydrology, semiconductor physics, wave propagation, etc., is highlighted. For researchers and graduate students of physics, applied mathematics and engineering, whose work involves mathematical modelling and the quantitative solution of systems of equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordinary Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zerlegung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4190746-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dekomposition</subfield><subfield code="0">(DE-588)4149030-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Dekomposition</subfield><subfield code="0">(DE-588)4149030-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Zerlegung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4190746-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-015-8289-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027851661</subfield></datafield></record></collection> |
id | DE-604.BV042416168 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:59Z |
institution | BVB |
isbn | 9789401582896 9789048143528 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027851661 |
oclc_num | 860188526 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (XIV, 354 p) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Fundamental Theories of Physics, An International Book Series on The Fundamental Theories of Physics: Their Clarification, Development and Application |
spelling | Adomian, George Verfasser aut Solving Frontier Problems of Physics: The Decomposition Method by George Adomian Dordrecht Springer Netherlands 1994 1 Online-Ressource (XIV, 354 p) txt rdacontent c rdamedia cr rdacarrier Fundamental Theories of Physics, An International Book Series on The Fundamental Theories of Physics: Their Clarification, Development and Application 60 The Adomian decomposition method enables the accurate and efficient analytic solution of nonlinear ordinary or partial differential equations without the need to resort to linearization or perturbation approaches. It unifies the treatment of linear and nonlinear, ordinary or partial differential equations, or systems of such equations, into a single basic method, which is applicable to both initial and boundary-value problems. This volume deals with the application of this method to many problems of physics, including some frontier problems which have previously required much more computationally-intensive approaches. The opening chapters deal with various fundamental aspects of the decomposition method. Subsequent chapters deal with the application of the method to nonlinear oscillatory systems in physics, the Duffing equation, boundary-value problems with closed irregular contours or surfaces, and other frontier areas. The potential application of this method to a wide range of problems in diverse disciplines such as biology, hydrology, semiconductor physics, wave propagation, etc., is highlighted. For researchers and graduate students of physics, applied mathematics and engineering, whose work involves mathematical modelling and the quantitative solution of systems of equations Physics Differential Equations Differential equations, partial Mathematics Theoretical, Mathematical and Computational Physics Partial Differential Equations Ordinary Differential Equations Applications of Mathematics Mathematik Zerlegung Mathematik (DE-588)4190746-2 gnd rswk-swf Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Dekomposition (DE-588)4149030-7 gnd rswk-swf Dekomposition (DE-588)4149030-7 s Mathematische Physik (DE-588)4037952-8 s DE-604 Zerlegung Mathematik (DE-588)4190746-2 s https://doi.org/10.1007/978-94-015-8289-6 Verlag Volltext |
spellingShingle | Adomian, George Solving Frontier Problems of Physics: The Decomposition Method Physics Differential Equations Differential equations, partial Mathematics Theoretical, Mathematical and Computational Physics Partial Differential Equations Ordinary Differential Equations Applications of Mathematics Mathematik Zerlegung Mathematik (DE-588)4190746-2 gnd Mathematische Physik (DE-588)4037952-8 gnd Dekomposition (DE-588)4149030-7 gnd |
subject_GND | (DE-588)4190746-2 (DE-588)4037952-8 (DE-588)4149030-7 |
title | Solving Frontier Problems of Physics: The Decomposition Method |
title_auth | Solving Frontier Problems of Physics: The Decomposition Method |
title_exact_search | Solving Frontier Problems of Physics: The Decomposition Method |
title_full | Solving Frontier Problems of Physics: The Decomposition Method by George Adomian |
title_fullStr | Solving Frontier Problems of Physics: The Decomposition Method by George Adomian |
title_full_unstemmed | Solving Frontier Problems of Physics: The Decomposition Method by George Adomian |
title_short | Solving Frontier Problems of Physics: The Decomposition Method |
title_sort | solving frontier problems of physics the decomposition method |
topic | Physics Differential Equations Differential equations, partial Mathematics Theoretical, Mathematical and Computational Physics Partial Differential Equations Ordinary Differential Equations Applications of Mathematics Mathematik Zerlegung Mathematik (DE-588)4190746-2 gnd Mathematische Physik (DE-588)4037952-8 gnd Dekomposition (DE-588)4149030-7 gnd |
topic_facet | Physics Differential Equations Differential equations, partial Mathematics Theoretical, Mathematical and Computational Physics Partial Differential Equations Ordinary Differential Equations Applications of Mathematics Mathematik Zerlegung Mathematik Mathematische Physik Dekomposition |
url | https://doi.org/10.1007/978-94-015-8289-6 |
work_keys_str_mv | AT adomiangeorge solvingfrontierproblemsofphysicsthedecompositionmethod |