Hamiltonian Systems with Three or More Degrees of Freedom:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1999
|
Schriftenreihe: | NATO ASI Series, Series C:Mathematical and Physical Sciences
533 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | A survey of current knowledge about Hamiltonian systems with three or more degrees of freedom and related topics. The Hamiltonian systems appearing in most of the applications are non-integrable. Hence methods to prove non-integrability results are presented and the different meaning attributed to non-integrability are discussed. For systems near an integrable one, it can be shown that, under suitable conditions, some parts of the integrable structure, most of the invariant tori, survive. Many of the papers discuss near-integrable systems. From a topological point of view, some singularities must appear in different problems, either caustics, geodesics, moving wavefronts, etc. This is also related to singularities in the projections of invariant objects, and can be used as a signature of these objects. Hyperbolic dynamics appear as a source on unpredictable behaviour and several mechanisms of hyperbolicity are presented. The destruction of tori leads to Aubrey-Mather objects, and this is touched on for a related class of systems. Examples without periodic orbits are constructed, against a classical conjecture. Other topics concern higher dimensional systems, either finite (networks and localised vibrations on them) or infinite, like the quasiperiodic Schrödinger operator or nonlinear hyperbolic PDE displaying quasiperiodic solutions. Most of the applications presented concern celestial mechanics problems, like the asteroid problem, the design of spacecraft orbits, and methods to compute periodic solutions |
Beschreibung: | 1 Online-Ressource (XXIV, 658 p) |
ISBN: | 9789401146739 9789401059688 |
ISSN: | 1389-2185 |
DOI: | 10.1007/978-94-011-4673-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042416015 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s1999 |||| o||u| ||||||eng d | ||
020 | |a 9789401146739 |c Online |9 978-94-011-4673-9 | ||
020 | |a 9789401059688 |c Print |9 978-94-010-5968-8 | ||
024 | 7 | |a 10.1007/978-94-011-4673-9 |2 doi | |
035 | |a (OCoLC)863781773 | ||
035 | |a (DE-599)BVBBV042416015 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 514.74 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Simó, Carles |e Verfasser |4 aut | |
245 | 1 | 0 | |a Hamiltonian Systems with Three or More Degrees of Freedom |c edited by Carles Simó |
246 | 1 | 3 | |a Proceedings of the NATO Advanced Study Institute, S'Agaro, Spain, June 19-30, 1995 |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1999 | |
300 | |a 1 Online-Ressource (XXIV, 658 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a NATO ASI Series, Series C:Mathematical and Physical Sciences |v 533 |x 1389-2185 | |
500 | |a A survey of current knowledge about Hamiltonian systems with three or more degrees of freedom and related topics. The Hamiltonian systems appearing in most of the applications are non-integrable. Hence methods to prove non-integrability results are presented and the different meaning attributed to non-integrability are discussed. For systems near an integrable one, it can be shown that, under suitable conditions, some parts of the integrable structure, most of the invariant tori, survive. Many of the papers discuss near-integrable systems. From a topological point of view, some singularities must appear in different problems, either caustics, geodesics, moving wavefronts, etc. This is also related to singularities in the projections of invariant objects, and can be used as a signature of these objects. Hyperbolic dynamics appear as a source on unpredictable behaviour and several mechanisms of hyperbolicity are presented. The destruction of tori leads to Aubrey-Mather objects, and this is touched on for a related class of systems. Examples without periodic orbits are constructed, against a classical conjecture. Other topics concern higher dimensional systems, either finite (networks and localised vibrations on them) or infinite, like the quasiperiodic Schrödinger operator or nonlinear hyperbolic PDE displaying quasiperiodic solutions. Most of the applications presented concern celestial mechanics problems, like the asteroid problem, the design of spacecraft orbits, and methods to compute periodic solutions | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis | |
650 | 4 | |a Differential Equations | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Mechanics | |
650 | 4 | |a Global Analysis and Analysis on Manifolds | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Ordinary Differential Equations | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Hamiltonsches System |0 (DE-588)4139943-2 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)1071861417 |a Konferenzschrift |y 1995 |z S'Agaro |2 gnd-content | |
689 | 0 | 0 | |a Hamiltonsches System |0 (DE-588)4139943-2 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-011-4673-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027851507 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153083913043968 |
---|---|
any_adam_object | |
author | Simó, Carles |
author_facet | Simó, Carles |
author_role | aut |
author_sort | Simó, Carles |
author_variant | c s cs |
building | Verbundindex |
bvnumber | BV042416015 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)863781773 (DE-599)BVBBV042416015 |
dewey-full | 514.74 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.74 |
dewey-search | 514.74 |
dewey-sort | 3514.74 |
dewey-tens | 510 - Mathematics |
discipline | Physik Mathematik |
doi_str_mv | 10.1007/978-94-011-4673-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03641nmm a2200565zcb4500</leader><controlfield tag="001">BV042416015</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401146739</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-011-4673-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401059688</subfield><subfield code="c">Print</subfield><subfield code="9">978-94-010-5968-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-011-4673-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863781773</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042416015</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.74</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Simó, Carles</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hamiltonian Systems with Three or More Degrees of Freedom</subfield><subfield code="c">edited by Carles Simó</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Proceedings of the NATO Advanced Study Institute, S'Agaro, Spain, June 19-30, 1995</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXIV, 658 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">NATO ASI Series, Series C:Mathematical and Physical Sciences</subfield><subfield code="v">533</subfield><subfield code="x">1389-2185</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">A survey of current knowledge about Hamiltonian systems with three or more degrees of freedom and related topics. The Hamiltonian systems appearing in most of the applications are non-integrable. Hence methods to prove non-integrability results are presented and the different meaning attributed to non-integrability are discussed. For systems near an integrable one, it can be shown that, under suitable conditions, some parts of the integrable structure, most of the invariant tori, survive. Many of the papers discuss near-integrable systems. From a topological point of view, some singularities must appear in different problems, either caustics, geodesics, moving wavefronts, etc. This is also related to singularities in the projections of invariant objects, and can be used as a signature of these objects. Hyperbolic dynamics appear as a source on unpredictable behaviour and several mechanisms of hyperbolicity are presented. The destruction of tori leads to Aubrey-Mather objects, and this is touched on for a related class of systems. Examples without periodic orbits are constructed, against a classical conjecture. Other topics concern higher dimensional systems, either finite (networks and localised vibrations on them) or infinite, like the quasiperiodic Schrödinger operator or nonlinear hyperbolic PDE displaying quasiperiodic solutions. Most of the applications presented concern celestial mechanics problems, like the asteroid problem, the design of spacecraft orbits, and methods to compute periodic solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global Analysis and Analysis on Manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordinary Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hamiltonsches System</subfield><subfield code="0">(DE-588)4139943-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">1995</subfield><subfield code="z">S'Agaro</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hamiltonsches System</subfield><subfield code="0">(DE-588)4139943-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-011-4673-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027851507</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)1071861417 Konferenzschrift 1995 S'Agaro gnd-content |
genre_facet | Konferenzschrift 1995 S'Agaro |
id | DE-604.BV042416015 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:58Z |
institution | BVB |
isbn | 9789401146739 9789401059688 |
issn | 1389-2185 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027851507 |
oclc_num | 863781773 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (XXIV, 658 p) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Springer Netherlands |
record_format | marc |
series2 | NATO ASI Series, Series C:Mathematical and Physical Sciences |
spelling | Simó, Carles Verfasser aut Hamiltonian Systems with Three or More Degrees of Freedom edited by Carles Simó Proceedings of the NATO Advanced Study Institute, S'Agaro, Spain, June 19-30, 1995 Dordrecht Springer Netherlands 1999 1 Online-Ressource (XXIV, 658 p) txt rdacontent c rdamedia cr rdacarrier NATO ASI Series, Series C:Mathematical and Physical Sciences 533 1389-2185 A survey of current knowledge about Hamiltonian systems with three or more degrees of freedom and related topics. The Hamiltonian systems appearing in most of the applications are non-integrable. Hence methods to prove non-integrability results are presented and the different meaning attributed to non-integrability are discussed. For systems near an integrable one, it can be shown that, under suitable conditions, some parts of the integrable structure, most of the invariant tori, survive. Many of the papers discuss near-integrable systems. From a topological point of view, some singularities must appear in different problems, either caustics, geodesics, moving wavefronts, etc. This is also related to singularities in the projections of invariant objects, and can be used as a signature of these objects. Hyperbolic dynamics appear as a source on unpredictable behaviour and several mechanisms of hyperbolicity are presented. The destruction of tori leads to Aubrey-Mather objects, and this is touched on for a related class of systems. Examples without periodic orbits are constructed, against a classical conjecture. Other topics concern higher dimensional systems, either finite (networks and localised vibrations on them) or infinite, like the quasiperiodic Schrödinger operator or nonlinear hyperbolic PDE displaying quasiperiodic solutions. Most of the applications presented concern celestial mechanics problems, like the asteroid problem, the design of spacecraft orbits, and methods to compute periodic solutions Mathematics Global analysis Differential Equations Differential equations, partial Mechanics Global Analysis and Analysis on Manifolds Applications of Mathematics Ordinary Differential Equations Partial Differential Equations Mathematik Hamiltonsches System (DE-588)4139943-2 gnd rswk-swf 1\p (DE-588)1071861417 Konferenzschrift 1995 S'Agaro gnd-content Hamiltonsches System (DE-588)4139943-2 s 2\p DE-604 https://doi.org/10.1007/978-94-011-4673-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Simó, Carles Hamiltonian Systems with Three or More Degrees of Freedom Mathematics Global analysis Differential Equations Differential equations, partial Mechanics Global Analysis and Analysis on Manifolds Applications of Mathematics Ordinary Differential Equations Partial Differential Equations Mathematik Hamiltonsches System (DE-588)4139943-2 gnd |
subject_GND | (DE-588)4139943-2 (DE-588)1071861417 |
title | Hamiltonian Systems with Three or More Degrees of Freedom |
title_alt | Proceedings of the NATO Advanced Study Institute, S'Agaro, Spain, June 19-30, 1995 |
title_auth | Hamiltonian Systems with Three or More Degrees of Freedom |
title_exact_search | Hamiltonian Systems with Three or More Degrees of Freedom |
title_full | Hamiltonian Systems with Three or More Degrees of Freedom edited by Carles Simó |
title_fullStr | Hamiltonian Systems with Three or More Degrees of Freedom edited by Carles Simó |
title_full_unstemmed | Hamiltonian Systems with Three or More Degrees of Freedom edited by Carles Simó |
title_short | Hamiltonian Systems with Three or More Degrees of Freedom |
title_sort | hamiltonian systems with three or more degrees of freedom |
topic | Mathematics Global analysis Differential Equations Differential equations, partial Mechanics Global Analysis and Analysis on Manifolds Applications of Mathematics Ordinary Differential Equations Partial Differential Equations Mathematik Hamiltonsches System (DE-588)4139943-2 gnd |
topic_facet | Mathematics Global analysis Differential Equations Differential equations, partial Mechanics Global Analysis and Analysis on Manifolds Applications of Mathematics Ordinary Differential Equations Partial Differential Equations Mathematik Hamiltonsches System Konferenzschrift 1995 S'Agaro |
url | https://doi.org/10.1007/978-94-011-4673-9 |
work_keys_str_mv | AT simocarles hamiltoniansystemswiththreeormoredegreesoffreedom AT simocarles proceedingsofthenatoadvancedstudyinstitutesagarospainjune19301995 |