Mechanics of Fracture Initiation and Propagation: Surface and volume energy density applied as failure criterion
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1991
|
Schriftenreihe: | Engineering Applications of Fracture Mechanics
11 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The assessment of crack initiation and/or propagation has been the subject of many past discussions on fracture mechanics. Depending on how the chosen failure criterion is combined with the solution of a particular theory of continuum mechanics, the outcome could vary over a wide range. Mod elling of the material damage process could be elusive if the scale level of observation is left undefined. The specification of physical dimension alone is not sufficient because time and temperature also play an intimate role. It is only when the latter two variables are fixed that failure predictions can be simplified. The sudden fracture of material with a pre-existing crack is a case in point. Barring changes in the local temperature,* the energy released to create a unit surface area of an existing crack can be obtained by considering the change in elastic energy of the system before and after crack extension. Such a quantity has been referred to as the critical energy release rate, G e, or stress intensity factor, K Ie. Other parameters, such as the crack opening displacement (COD), path-independent J-integral, etc. , have been proposed; their relation to the fracture process is also based on the energy release concept. These one-parameter approaches, however, are unable simultaneously to account for the failure process of crack initiation, propagation and onset of rapid fracture. A review on the use of G, K I, COD, J, etc. , has been made by Sih [1,2] |
Beschreibung: | 1 Online-Ressource (XXII, 410 p) |
ISBN: | 9789401137348 9789401056601 |
DOI: | 10.1007/978-94-011-3734-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042415953 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s1991 |||| o||u| ||||||eng d | ||
020 | |a 9789401137348 |c Online |9 978-94-011-3734-8 | ||
020 | |a 9789401056601 |c Print |9 978-94-010-5660-1 | ||
024 | 7 | |a 10.1007/978-94-011-3734-8 |2 doi | |
035 | |a (OCoLC)863685106 | ||
035 | |a (DE-599)BVBBV042415953 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 531 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Sih, G. C. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Mechanics of Fracture Initiation and Propagation |b Surface and volume energy density applied as failure criterion |c by G. C. Sih |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1991 | |
300 | |a 1 Online-Ressource (XXII, 410 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Engineering Applications of Fracture Mechanics |v 11 | |
500 | |a The assessment of crack initiation and/or propagation has been the subject of many past discussions on fracture mechanics. Depending on how the chosen failure criterion is combined with the solution of a particular theory of continuum mechanics, the outcome could vary over a wide range. Mod elling of the material damage process could be elusive if the scale level of observation is left undefined. The specification of physical dimension alone is not sufficient because time and temperature also play an intimate role. It is only when the latter two variables are fixed that failure predictions can be simplified. The sudden fracture of material with a pre-existing crack is a case in point. Barring changes in the local temperature,* the energy released to create a unit surface area of an existing crack can be obtained by considering the change in elastic energy of the system before and after crack extension. Such a quantity has been referred to as the critical energy release rate, G e, or stress intensity factor, K Ie. Other parameters, such as the crack opening displacement (COD), path-independent J-integral, etc. , have been proposed; their relation to the fracture process is also based on the energy release concept. These one-parameter approaches, however, are unable simultaneously to account for the failure process of crack initiation, propagation and onset of rapid fracture. A review on the use of G, K I, COD, J, etc. , has been made by Sih [1,2] | ||
650 | 4 | |a Physics | |
650 | 4 | |a Mechanics | |
650 | 4 | |a Engineering | |
650 | 4 | |a Civil engineering | |
650 | 4 | |a Surfaces (Physics) | |
650 | 4 | |a Automotive Engineering | |
650 | 4 | |a Civil Engineering | |
650 | 4 | |a Characterization and Evaluation of Materials | |
650 | 4 | |a Ingenieurwissenschaften | |
650 | 0 | 7 | |a Rissbildung |0 (DE-588)4050137-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Rissausbreitung |0 (DE-588)4136911-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bruchmechanik |0 (DE-588)4112837-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Rissbildung |0 (DE-588)4050137-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Bruchmechanik |0 (DE-588)4112837-0 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Rissausbreitung |0 (DE-588)4136911-7 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-011-3734-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027851446 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153083768340480 |
---|---|
any_adam_object | |
author | Sih, G. C. |
author_facet | Sih, G. C. |
author_role | aut |
author_sort | Sih, G. C. |
author_variant | g c s gc gcs |
building | Verbundindex |
bvnumber | BV042415953 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)863685106 (DE-599)BVBBV042415953 |
dewey-full | 531 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 531 - Classical mechanics |
dewey-raw | 531 |
dewey-search | 531 |
dewey-sort | 3531 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-94-011-3734-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03693nmm a2200613zcb4500</leader><controlfield tag="001">BV042415953</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1991 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401137348</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-011-3734-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401056601</subfield><subfield code="c">Print</subfield><subfield code="9">978-94-010-5660-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-011-3734-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863685106</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042415953</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">531</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sih, G. C.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mechanics of Fracture Initiation and Propagation</subfield><subfield code="b">Surface and volume energy density applied as failure criterion</subfield><subfield code="c">by G. C. Sih</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXII, 410 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Engineering Applications of Fracture Mechanics</subfield><subfield code="v">11</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The assessment of crack initiation and/or propagation has been the subject of many past discussions on fracture mechanics. Depending on how the chosen failure criterion is combined with the solution of a particular theory of continuum mechanics, the outcome could vary over a wide range. Mod elling of the material damage process could be elusive if the scale level of observation is left undefined. The specification of physical dimension alone is not sufficient because time and temperature also play an intimate role. It is only when the latter two variables are fixed that failure predictions can be simplified. The sudden fracture of material with a pre-existing crack is a case in point. Barring changes in the local temperature,* the energy released to create a unit surface area of an existing crack can be obtained by considering the change in elastic energy of the system before and after crack extension. Such a quantity has been referred to as the critical energy release rate, G e, or stress intensity factor, K Ie. Other parameters, such as the crack opening displacement (COD), path-independent J-integral, etc. , have been proposed; their relation to the fracture process is also based on the energy release concept. These one-parameter approaches, however, are unable simultaneously to account for the failure process of crack initiation, propagation and onset of rapid fracture. A review on the use of G, K I, COD, J, etc. , has been made by Sih [1,2]</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Civil engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surfaces (Physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automotive Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Civil Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Characterization and Evaluation of Materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingenieurwissenschaften</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Rissbildung</subfield><subfield code="0">(DE-588)4050137-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Rissausbreitung</subfield><subfield code="0">(DE-588)4136911-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bruchmechanik</subfield><subfield code="0">(DE-588)4112837-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Rissbildung</subfield><subfield code="0">(DE-588)4050137-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Bruchmechanik</subfield><subfield code="0">(DE-588)4112837-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Rissausbreitung</subfield><subfield code="0">(DE-588)4136911-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-011-3734-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027851446</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042415953 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:58Z |
institution | BVB |
isbn | 9789401137348 9789401056601 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027851446 |
oclc_num | 863685106 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (XXII, 410 p) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Engineering Applications of Fracture Mechanics |
spelling | Sih, G. C. Verfasser aut Mechanics of Fracture Initiation and Propagation Surface and volume energy density applied as failure criterion by G. C. Sih Dordrecht Springer Netherlands 1991 1 Online-Ressource (XXII, 410 p) txt rdacontent c rdamedia cr rdacarrier Engineering Applications of Fracture Mechanics 11 The assessment of crack initiation and/or propagation has been the subject of many past discussions on fracture mechanics. Depending on how the chosen failure criterion is combined with the solution of a particular theory of continuum mechanics, the outcome could vary over a wide range. Mod elling of the material damage process could be elusive if the scale level of observation is left undefined. The specification of physical dimension alone is not sufficient because time and temperature also play an intimate role. It is only when the latter two variables are fixed that failure predictions can be simplified. The sudden fracture of material with a pre-existing crack is a case in point. Barring changes in the local temperature,* the energy released to create a unit surface area of an existing crack can be obtained by considering the change in elastic energy of the system before and after crack extension. Such a quantity has been referred to as the critical energy release rate, G e, or stress intensity factor, K Ie. Other parameters, such as the crack opening displacement (COD), path-independent J-integral, etc. , have been proposed; their relation to the fracture process is also based on the energy release concept. These one-parameter approaches, however, are unable simultaneously to account for the failure process of crack initiation, propagation and onset of rapid fracture. A review on the use of G, K I, COD, J, etc. , has been made by Sih [1,2] Physics Mechanics Engineering Civil engineering Surfaces (Physics) Automotive Engineering Civil Engineering Characterization and Evaluation of Materials Ingenieurwissenschaften Rissbildung (DE-588)4050137-1 gnd rswk-swf Rissausbreitung (DE-588)4136911-7 gnd rswk-swf Bruchmechanik (DE-588)4112837-0 gnd rswk-swf Rissbildung (DE-588)4050137-1 s 1\p DE-604 Bruchmechanik (DE-588)4112837-0 s 2\p DE-604 Rissausbreitung (DE-588)4136911-7 s 3\p DE-604 https://doi.org/10.1007/978-94-011-3734-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Sih, G. C. Mechanics of Fracture Initiation and Propagation Surface and volume energy density applied as failure criterion Physics Mechanics Engineering Civil engineering Surfaces (Physics) Automotive Engineering Civil Engineering Characterization and Evaluation of Materials Ingenieurwissenschaften Rissbildung (DE-588)4050137-1 gnd Rissausbreitung (DE-588)4136911-7 gnd Bruchmechanik (DE-588)4112837-0 gnd |
subject_GND | (DE-588)4050137-1 (DE-588)4136911-7 (DE-588)4112837-0 |
title | Mechanics of Fracture Initiation and Propagation Surface and volume energy density applied as failure criterion |
title_auth | Mechanics of Fracture Initiation and Propagation Surface and volume energy density applied as failure criterion |
title_exact_search | Mechanics of Fracture Initiation and Propagation Surface and volume energy density applied as failure criterion |
title_full | Mechanics of Fracture Initiation and Propagation Surface and volume energy density applied as failure criterion by G. C. Sih |
title_fullStr | Mechanics of Fracture Initiation and Propagation Surface and volume energy density applied as failure criterion by G. C. Sih |
title_full_unstemmed | Mechanics of Fracture Initiation and Propagation Surface and volume energy density applied as failure criterion by G. C. Sih |
title_short | Mechanics of Fracture Initiation and Propagation |
title_sort | mechanics of fracture initiation and propagation surface and volume energy density applied as failure criterion |
title_sub | Surface and volume energy density applied as failure criterion |
topic | Physics Mechanics Engineering Civil engineering Surfaces (Physics) Automotive Engineering Civil Engineering Characterization and Evaluation of Materials Ingenieurwissenschaften Rissbildung (DE-588)4050137-1 gnd Rissausbreitung (DE-588)4136911-7 gnd Bruchmechanik (DE-588)4112837-0 gnd |
topic_facet | Physics Mechanics Engineering Civil engineering Surfaces (Physics) Automotive Engineering Civil Engineering Characterization and Evaluation of Materials Ingenieurwissenschaften Rissbildung Rissausbreitung Bruchmechanik |
url | https://doi.org/10.1007/978-94-011-3734-8 |
work_keys_str_mv | AT sihgc mechanicsoffractureinitiationandpropagationsurfaceandvolumeenergydensityappliedasfailurecriterion |