Scanning Tunneling Microscopy:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1993
|
Schriftenreihe: | Perspectives in Condensed Matter Physics, A Critical Reprint Series
6 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The publication entitled "Surface Studies by Scanning Tunneling Mi Rl croscopy" by Binnig, Rohrer, Gerber and Weibel of the IBM Research Lab oratory in Riischlikon in 1982 immediately raised considerable interest in the sur face science community. It was demonstrated in Reference R1 that images from atomic structures of surfaces like individual steps could be obtained simply by scanning the surface with a sharp metal tip, which was kept in a constant distance of approximately 10 A from the sample surface. The distance control in scanning tunneling microscopy (STM) was realized by a feedback circuit, where the electri cal tunneling current through the potential barrier between tip and sample is used for regulating the tip position with a piezoelectric xyz-system. A similar experi mental approach has already been described by Young et al. for the determination l of the macroscopic roughness of a surface. A number of experimental difficulties had to be solved by the IBM group until this conceptual simple microscopic method could be applied successfully with atomic resolution. Firstly, distance and scanning control of the tip have to be operated with sufficient precision to be sensitive to atomic structures. Secondly, sample holder and tunneling unit have to be designed in such a way that external vibrations do not influence the sample-tip distance and that thermal or other drift effects become small enough during measurement of one image |
Beschreibung: | 1 Online-Ressource (XI, 267 p) |
ISBN: | 9789401118125 9780792320654 |
ISSN: | 0923-1749 |
DOI: | 10.1007/978-94-011-1812-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042415828 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s1993 |||| o||u| ||||||eng d | ||
020 | |a 9789401118125 |c Online |9 978-94-011-1812-5 | ||
020 | |a 9780792320654 |c Print |9 978-0-7923-2065-4 | ||
024 | 7 | |a 10.1007/978-94-011-1812-5 |2 doi | |
035 | |a (OCoLC)863762870 | ||
035 | |a (DE-599)BVBBV042415828 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 530 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Neddermeyer, H. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Scanning Tunneling Microscopy |c edited by H. Neddermeyer |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1993 | |
300 | |a 1 Online-Ressource (XI, 267 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Perspectives in Condensed Matter Physics, A Critical Reprint Series |v 6 |x 0923-1749 | |
500 | |a The publication entitled "Surface Studies by Scanning Tunneling Mi Rl croscopy" by Binnig, Rohrer, Gerber and Weibel of the IBM Research Lab oratory in Riischlikon in 1982 immediately raised considerable interest in the sur face science community. It was demonstrated in Reference R1 that images from atomic structures of surfaces like individual steps could be obtained simply by scanning the surface with a sharp metal tip, which was kept in a constant distance of approximately 10 A from the sample surface. The distance control in scanning tunneling microscopy (STM) was realized by a feedback circuit, where the electri cal tunneling current through the potential barrier between tip and sample is used for regulating the tip position with a piezoelectric xyz-system. A similar experi mental approach has already been described by Young et al. for the determination l of the macroscopic roughness of a surface. A number of experimental difficulties had to be solved by the IBM group until this conceptual simple microscopic method could be applied successfully with atomic resolution. Firstly, distance and scanning control of the tip have to be operated with sufficient precision to be sensitive to atomic structures. Secondly, sample holder and tunneling unit have to be designed in such a way that external vibrations do not influence the sample-tip distance and that thermal or other drift effects become small enough during measurement of one image | ||
650 | 4 | |a Physics | |
650 | 4 | |a Chemistry, Physical organic | |
650 | 4 | |a Surfaces (Physics) | |
650 | 4 | |a Physics, general | |
650 | 4 | |a Characterization and Evaluation of Materials | |
650 | 4 | |a Physical Chemistry | |
650 | 0 | 7 | |a Rastertunnelmikroskopie |0 (DE-588)4252995-5 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Rastertunnelmikroskopie |0 (DE-588)4252995-5 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-011-1812-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027851321 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153083435941888 |
---|---|
any_adam_object | |
author | Neddermeyer, H. |
author_facet | Neddermeyer, H. |
author_role | aut |
author_sort | Neddermeyer, H. |
author_variant | h n hn |
building | Verbundindex |
bvnumber | BV042415828 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)863762870 (DE-599)BVBBV042415828 |
dewey-full | 530 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530 |
dewey-search | 530 |
dewey-sort | 3530 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-94-011-1812-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03279nmm a2200505zcb4500</leader><controlfield tag="001">BV042415828</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1993 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401118125</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-011-1812-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780792320654</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-7923-2065-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-011-1812-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863762870</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042415828</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Neddermeyer, H.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Scanning Tunneling Microscopy</subfield><subfield code="c">edited by H. Neddermeyer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 267 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Perspectives in Condensed Matter Physics, A Critical Reprint Series</subfield><subfield code="v">6</subfield><subfield code="x">0923-1749</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The publication entitled "Surface Studies by Scanning Tunneling Mi Rl croscopy" by Binnig, Rohrer, Gerber and Weibel of the IBM Research Lab oratory in Riischlikon in 1982 immediately raised considerable interest in the sur face science community. It was demonstrated in Reference R1 that images from atomic structures of surfaces like individual steps could be obtained simply by scanning the surface with a sharp metal tip, which was kept in a constant distance of approximately 10 A from the sample surface. The distance control in scanning tunneling microscopy (STM) was realized by a feedback circuit, where the electri cal tunneling current through the potential barrier between tip and sample is used for regulating the tip position with a piezoelectric xyz-system. A similar experi mental approach has already been described by Young et al. for the determination l of the macroscopic roughness of a surface. A number of experimental difficulties had to be solved by the IBM group until this conceptual simple microscopic method could be applied successfully with atomic resolution. Firstly, distance and scanning control of the tip have to be operated with sufficient precision to be sensitive to atomic structures. Secondly, sample holder and tunneling unit have to be designed in such a way that external vibrations do not influence the sample-tip distance and that thermal or other drift effects become small enough during measurement of one image</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemistry, Physical organic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surfaces (Physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Characterization and Evaluation of Materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physical Chemistry</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Rastertunnelmikroskopie</subfield><subfield code="0">(DE-588)4252995-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Rastertunnelmikroskopie</subfield><subfield code="0">(DE-588)4252995-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-011-1812-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027851321</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV042415828 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:58Z |
institution | BVB |
isbn | 9789401118125 9780792320654 |
issn | 0923-1749 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027851321 |
oclc_num | 863762870 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (XI, 267 p) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Perspectives in Condensed Matter Physics, A Critical Reprint Series |
spelling | Neddermeyer, H. Verfasser aut Scanning Tunneling Microscopy edited by H. Neddermeyer Dordrecht Springer Netherlands 1993 1 Online-Ressource (XI, 267 p) txt rdacontent c rdamedia cr rdacarrier Perspectives in Condensed Matter Physics, A Critical Reprint Series 6 0923-1749 The publication entitled "Surface Studies by Scanning Tunneling Mi Rl croscopy" by Binnig, Rohrer, Gerber and Weibel of the IBM Research Lab oratory in Riischlikon in 1982 immediately raised considerable interest in the sur face science community. It was demonstrated in Reference R1 that images from atomic structures of surfaces like individual steps could be obtained simply by scanning the surface with a sharp metal tip, which was kept in a constant distance of approximately 10 A from the sample surface. The distance control in scanning tunneling microscopy (STM) was realized by a feedback circuit, where the electri cal tunneling current through the potential barrier between tip and sample is used for regulating the tip position with a piezoelectric xyz-system. A similar experi mental approach has already been described by Young et al. for the determination l of the macroscopic roughness of a surface. A number of experimental difficulties had to be solved by the IBM group until this conceptual simple microscopic method could be applied successfully with atomic resolution. Firstly, distance and scanning control of the tip have to be operated with sufficient precision to be sensitive to atomic structures. Secondly, sample holder and tunneling unit have to be designed in such a way that external vibrations do not influence the sample-tip distance and that thermal or other drift effects become small enough during measurement of one image Physics Chemistry, Physical organic Surfaces (Physics) Physics, general Characterization and Evaluation of Materials Physical Chemistry Rastertunnelmikroskopie (DE-588)4252995-5 gnd rswk-swf 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content Rastertunnelmikroskopie (DE-588)4252995-5 s 2\p DE-604 https://doi.org/10.1007/978-94-011-1812-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Neddermeyer, H. Scanning Tunneling Microscopy Physics Chemistry, Physical organic Surfaces (Physics) Physics, general Characterization and Evaluation of Materials Physical Chemistry Rastertunnelmikroskopie (DE-588)4252995-5 gnd |
subject_GND | (DE-588)4252995-5 (DE-588)4143413-4 |
title | Scanning Tunneling Microscopy |
title_auth | Scanning Tunneling Microscopy |
title_exact_search | Scanning Tunneling Microscopy |
title_full | Scanning Tunneling Microscopy edited by H. Neddermeyer |
title_fullStr | Scanning Tunneling Microscopy edited by H. Neddermeyer |
title_full_unstemmed | Scanning Tunneling Microscopy edited by H. Neddermeyer |
title_short | Scanning Tunneling Microscopy |
title_sort | scanning tunneling microscopy |
topic | Physics Chemistry, Physical organic Surfaces (Physics) Physics, general Characterization and Evaluation of Materials Physical Chemistry Rastertunnelmikroskopie (DE-588)4252995-5 gnd |
topic_facet | Physics Chemistry, Physical organic Surfaces (Physics) Physics, general Characterization and Evaluation of Materials Physical Chemistry Rastertunnelmikroskopie Aufsatzsammlung |
url | https://doi.org/10.1007/978-94-011-1812-5 |
work_keys_str_mv | AT neddermeyerh scanningtunnelingmicroscopy |