Singularities in Boundary Value Problems: Proceedings of the NATO Advanced Study Institute held at Maratea, Italy, September 22–October 3, 1980
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1981
|
Schriftenreihe: | NATO Advanced Study Institutes Series, Series C-Mathematical and Physical Sciences
65 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The 1980 Maratea NATO Advanced Study Institute (= ASI) followed the lines of the 1976 Liege NATO ASI. Indeed, the interest of boundary problems for linear evolution partial differential equations and systems is more and more acute because of the outstanding position of those problems in the mathematical description of the physical world, namely through sciences such as fluid dynamics, elastodynamics, electro dynamics, electromagnetism, plasma physics and so on. In those problems the question of the propagation of singularities of the solution has boomed these last years. Placed in its definitive mathematical frame in 1970 by L. Hormander, this branch -of the theory recorded a tremendous impetus in the last decade and is now eagerly studied by the most prominent research workers in the field of partial differential equations. It describes the wave phenomena connected with the solution of boundary problems with very general boundaries, by replacing the (generailly impossible) computation of a precise solution by a convenient asymptotic approximation. For instance, it allows the description of progressive waves in a medium with obstacles of various shapes, meeting classical phenomena as reflexion, refraction, transmission, and even more complicated ones, called supersonic waves, head waves, creeping waves, •••••• The !'tudy of singularities uses involved new mathematical concepts (such as distributions, wave front sets, asymptotic developments, pseudo-differential operators, Fourier integral operators, microfunctions, ••• ) but emerges as the most sensible application to physical problems. A complete exposition of the present state of this theory seemed to be still lacking |
Beschreibung: | 1 Online-Ressource (XVI, 377 p) |
ISBN: | 9789400984349 9789400984363 |
ISSN: | 1389-2185 |
DOI: | 10.1007/978-94-009-8434-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042415399 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s1981 |||| o||u| ||||||eng d | ||
020 | |a 9789400984349 |c Online |9 978-94-009-8434-9 | ||
020 | |a 9789400984363 |c Print |9 978-94-009-8436-3 | ||
024 | 7 | |a 10.1007/978-94-009-8434-9 |2 doi | |
035 | |a (OCoLC)1002253115 | ||
035 | |a (DE-599)BVBBV042415399 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 512 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Garnir, H. G. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Singularities in Boundary Value Problems |b Proceedings of the NATO Advanced Study Institute held at Maratea, Italy, September 22–October 3, 1980 |c edited by H. G. Garnir |
246 | 1 | 3 | |a Proceedings of the NATO Advanced Study Institute, Maratea, Italy, September 22-October 3, 1980 |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1981 | |
300 | |a 1 Online-Ressource (XVI, 377 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a NATO Advanced Study Institutes Series, Series C-Mathematical and Physical Sciences |v 65 |x 1389-2185 | |
500 | |a The 1980 Maratea NATO Advanced Study Institute (= ASI) followed the lines of the 1976 Liege NATO ASI. Indeed, the interest of boundary problems for linear evolution partial differential equations and systems is more and more acute because of the outstanding position of those problems in the mathematical description of the physical world, namely through sciences such as fluid dynamics, elastodynamics, electro dynamics, electromagnetism, plasma physics and so on. In those problems the question of the propagation of singularities of the solution has boomed these last years. Placed in its definitive mathematical frame in 1970 by L. Hormander, this branch -of the theory recorded a tremendous impetus in the last decade and is now eagerly studied by the most prominent research workers in the field of partial differential equations. It describes the wave phenomena connected with the solution of boundary problems with very general boundaries, by replacing the (generailly impossible) computation of a precise solution by a convenient asymptotic approximation. For instance, it allows the description of progressive waves in a medium with obstacles of various shapes, meeting classical phenomena as reflexion, refraction, transmission, and even more complicated ones, called supersonic waves, head waves, creeping waves, •••••• The !'tudy of singularities uses involved new mathematical concepts (such as distributions, wave front sets, asymptotic developments, pseudo-differential operators, Fourier integral operators, microfunctions, ••• ) but emerges as the most sensible application to physical problems. A complete exposition of the present state of this theory seemed to be still lacking | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Algebra | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Singularität |g Mathematik |0 (DE-588)4077459-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Randwertproblem |0 (DE-588)4048395-2 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)1071861417 |a Konferenzschrift |y 1980 |z Maratea |2 gnd-content | |
689 | 0 | 0 | |a Singularität |g Mathematik |0 (DE-588)4077459-4 |D s |
689 | 0 | 1 | |a Randwertproblem |0 (DE-588)4048395-2 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-009-8434-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027850892 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153082432454656 |
---|---|
any_adam_object | |
author | Garnir, H. G. |
author_facet | Garnir, H. G. |
author_role | aut |
author_sort | Garnir, H. G. |
author_variant | h g g hg hgg |
building | Verbundindex |
bvnumber | BV042415399 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)1002253115 (DE-599)BVBBV042415399 |
dewey-full | 512 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512 |
dewey-search | 512 |
dewey-sort | 3512 |
dewey-tens | 510 - Mathematics |
discipline | Physik Mathematik |
doi_str_mv | 10.1007/978-94-009-8434-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03758nmm a2200505zcb4500</leader><controlfield tag="001">BV042415399</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1981 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789400984349</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-009-8434-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789400984363</subfield><subfield code="c">Print</subfield><subfield code="9">978-94-009-8436-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-009-8434-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1002253115</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042415399</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Garnir, H. G.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Singularities in Boundary Value Problems</subfield><subfield code="b">Proceedings of the NATO Advanced Study Institute held at Maratea, Italy, September 22–October 3, 1980</subfield><subfield code="c">edited by H. G. Garnir</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Proceedings of the NATO Advanced Study Institute, Maratea, Italy, September 22-October 3, 1980</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1981</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVI, 377 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">NATO Advanced Study Institutes Series, Series C-Mathematical and Physical Sciences</subfield><subfield code="v">65</subfield><subfield code="x">1389-2185</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The 1980 Maratea NATO Advanced Study Institute (= ASI) followed the lines of the 1976 Liege NATO ASI. Indeed, the interest of boundary problems for linear evolution partial differential equations and systems is more and more acute because of the outstanding position of those problems in the mathematical description of the physical world, namely through sciences such as fluid dynamics, elastodynamics, electro dynamics, electromagnetism, plasma physics and so on. In those problems the question of the propagation of singularities of the solution has boomed these last years. Placed in its definitive mathematical frame in 1970 by L. Hormander, this branch -of the theory recorded a tremendous impetus in the last decade and is now eagerly studied by the most prominent research workers in the field of partial differential equations. It describes the wave phenomena connected with the solution of boundary problems with very general boundaries, by replacing the (generailly impossible) computation of a precise solution by a convenient asymptotic approximation. For instance, it allows the description of progressive waves in a medium with obstacles of various shapes, meeting classical phenomena as reflexion, refraction, transmission, and even more complicated ones, called supersonic waves, head waves, creeping waves, •••••• The !'tudy of singularities uses involved new mathematical concepts (such as distributions, wave front sets, asymptotic developments, pseudo-differential operators, Fourier integral operators, microfunctions, ••• ) but emerges as the most sensible application to physical problems. A complete exposition of the present state of this theory seemed to be still lacking</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Singularität</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4077459-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">1980</subfield><subfield code="z">Maratea</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Singularität</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4077459-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-009-8434-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027850892</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)1071861417 Konferenzschrift 1980 Maratea gnd-content |
genre_facet | Konferenzschrift 1980 Maratea |
id | DE-604.BV042415399 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:57Z |
institution | BVB |
isbn | 9789400984349 9789400984363 |
issn | 1389-2185 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027850892 |
oclc_num | 1002253115 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (XVI, 377 p) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 1981 |
publishDateSearch | 1981 |
publishDateSort | 1981 |
publisher | Springer Netherlands |
record_format | marc |
series2 | NATO Advanced Study Institutes Series, Series C-Mathematical and Physical Sciences |
spelling | Garnir, H. G. Verfasser aut Singularities in Boundary Value Problems Proceedings of the NATO Advanced Study Institute held at Maratea, Italy, September 22–October 3, 1980 edited by H. G. Garnir Proceedings of the NATO Advanced Study Institute, Maratea, Italy, September 22-October 3, 1980 Dordrecht Springer Netherlands 1981 1 Online-Ressource (XVI, 377 p) txt rdacontent c rdamedia cr rdacarrier NATO Advanced Study Institutes Series, Series C-Mathematical and Physical Sciences 65 1389-2185 The 1980 Maratea NATO Advanced Study Institute (= ASI) followed the lines of the 1976 Liege NATO ASI. Indeed, the interest of boundary problems for linear evolution partial differential equations and systems is more and more acute because of the outstanding position of those problems in the mathematical description of the physical world, namely through sciences such as fluid dynamics, elastodynamics, electro dynamics, electromagnetism, plasma physics and so on. In those problems the question of the propagation of singularities of the solution has boomed these last years. Placed in its definitive mathematical frame in 1970 by L. Hormander, this branch -of the theory recorded a tremendous impetus in the last decade and is now eagerly studied by the most prominent research workers in the field of partial differential equations. It describes the wave phenomena connected with the solution of boundary problems with very general boundaries, by replacing the (generailly impossible) computation of a precise solution by a convenient asymptotic approximation. For instance, it allows the description of progressive waves in a medium with obstacles of various shapes, meeting classical phenomena as reflexion, refraction, transmission, and even more complicated ones, called supersonic waves, head waves, creeping waves, •••••• The !'tudy of singularities uses involved new mathematical concepts (such as distributions, wave front sets, asymptotic developments, pseudo-differential operators, Fourier integral operators, microfunctions, ••• ) but emerges as the most sensible application to physical problems. A complete exposition of the present state of this theory seemed to be still lacking Mathematics Algebra Mathematik Singularität Mathematik (DE-588)4077459-4 gnd rswk-swf Randwertproblem (DE-588)4048395-2 gnd rswk-swf 1\p (DE-588)1071861417 Konferenzschrift 1980 Maratea gnd-content Singularität Mathematik (DE-588)4077459-4 s Randwertproblem (DE-588)4048395-2 s 2\p DE-604 https://doi.org/10.1007/978-94-009-8434-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Garnir, H. G. Singularities in Boundary Value Problems Proceedings of the NATO Advanced Study Institute held at Maratea, Italy, September 22–October 3, 1980 Mathematics Algebra Mathematik Singularität Mathematik (DE-588)4077459-4 gnd Randwertproblem (DE-588)4048395-2 gnd |
subject_GND | (DE-588)4077459-4 (DE-588)4048395-2 (DE-588)1071861417 |
title | Singularities in Boundary Value Problems Proceedings of the NATO Advanced Study Institute held at Maratea, Italy, September 22–October 3, 1980 |
title_alt | Proceedings of the NATO Advanced Study Institute, Maratea, Italy, September 22-October 3, 1980 |
title_auth | Singularities in Boundary Value Problems Proceedings of the NATO Advanced Study Institute held at Maratea, Italy, September 22–October 3, 1980 |
title_exact_search | Singularities in Boundary Value Problems Proceedings of the NATO Advanced Study Institute held at Maratea, Italy, September 22–October 3, 1980 |
title_full | Singularities in Boundary Value Problems Proceedings of the NATO Advanced Study Institute held at Maratea, Italy, September 22–October 3, 1980 edited by H. G. Garnir |
title_fullStr | Singularities in Boundary Value Problems Proceedings of the NATO Advanced Study Institute held at Maratea, Italy, September 22–October 3, 1980 edited by H. G. Garnir |
title_full_unstemmed | Singularities in Boundary Value Problems Proceedings of the NATO Advanced Study Institute held at Maratea, Italy, September 22–October 3, 1980 edited by H. G. Garnir |
title_short | Singularities in Boundary Value Problems |
title_sort | singularities in boundary value problems proceedings of the nato advanced study institute held at maratea italy september 22 october 3 1980 |
title_sub | Proceedings of the NATO Advanced Study Institute held at Maratea, Italy, September 22–October 3, 1980 |
topic | Mathematics Algebra Mathematik Singularität Mathematik (DE-588)4077459-4 gnd Randwertproblem (DE-588)4048395-2 gnd |
topic_facet | Mathematics Algebra Mathematik Singularität Mathematik Randwertproblem Konferenzschrift 1980 Maratea |
url | https://doi.org/10.1007/978-94-009-8434-9 |
work_keys_str_mv | AT garnirhg singularitiesinboundaryvalueproblemsproceedingsofthenatoadvancedstudyinstituteheldatmarateaitalyseptember22october31980 AT garnirhg proceedingsofthenatoadvancedstudyinstitutemarateaitalyseptember22october31980 |