New Foundations for Classical Mechanics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1986
|
Schriftenreihe: | Fundamental Theories of Physics, A New International Book Series on The Fundamental Theories of Physics: Their Clarification, Development and Application
15 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This is a textbook on classical mechanics at the intermediate level, but its main purpose is to serve as an introduction to a new mathematical language for physics called geometric algebra. Mechanics is most commonly formulated today in terms of the vector algebra developed by the American physicist J. Willard Gibbs, but for some applications of mechanics the algebra of complex numbers is more efficient than vector algebra, while in other applications matrix algebra works better. Geometric algebra integrates all these algebraic systems into a coherent mathematical language which not only retains the advantages of each special algebra but possesses powerful new capabilities. This book covers the fairly standard material for a course on the mechanics of particles and rigid bodies. However, it will be seen that geometric algebra brings new insights into the treatment of nearly every topic and produces simplifications that move the subject quickly to advanced levels. That has made it possible in this book to carry the treatment of two major topics in mechanics well beyond the level of other textbooks. A few words are in order about the unique treatment of these two topics, namely, rotational dynamics and celestial mechanics |
Beschreibung: | 1 Online-Ressource (XI, 644 p) |
ISBN: | 9789400948020 9789027725264 |
DOI: | 10.1007/978-94-009-4802-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042415204 | ||
003 | DE-604 | ||
005 | 20180109 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s1986 |||| o||u| ||||||eng d | ||
020 | |a 9789400948020 |c Online |9 978-94-009-4802-0 | ||
020 | |a 9789027725264 |c Print |9 978-90-277-2526-4 | ||
024 | 7 | |a 10.1007/978-94-009-4802-0 |2 doi | |
035 | |a (OCoLC)863776669 | ||
035 | |a (DE-599)BVBBV042415204 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 531 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Hestenes, David |e Verfasser |4 aut | |
245 | 1 | 0 | |a New Foundations for Classical Mechanics |c by David Hestenes |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1986 | |
300 | |a 1 Online-Ressource (XI, 644 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Fundamental Theories of Physics, A New International Book Series on The Fundamental Theories of Physics: Their Clarification, Development and Application |v 15 | |
500 | |a This is a textbook on classical mechanics at the intermediate level, but its main purpose is to serve as an introduction to a new mathematical language for physics called geometric algebra. Mechanics is most commonly formulated today in terms of the vector algebra developed by the American physicist J. Willard Gibbs, but for some applications of mechanics the algebra of complex numbers is more efficient than vector algebra, while in other applications matrix algebra works better. Geometric algebra integrates all these algebraic systems into a coherent mathematical language which not only retains the advantages of each special algebra but possesses powerful new capabilities. This book covers the fairly standard material for a course on the mechanics of particles and rigid bodies. However, it will be seen that geometric algebra brings new insights into the treatment of nearly every topic and produces simplifications that move the subject quickly to advanced levels. That has made it possible in this book to carry the treatment of two major topics in mechanics well beyond the level of other textbooks. A few words are in order about the unique treatment of these two topics, namely, rotational dynamics and celestial mechanics | ||
650 | 4 | |a Physics | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Mechanics | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Astronomy, Observations and Techniques | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Mechanik |0 (DE-588)4038168-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrische Algebra |0 (DE-588)4156707-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Theoretische Mechanik |0 (DE-588)4185100-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mechanik |0 (DE-588)4038168-7 |D s |
689 | 0 | 1 | |a Geometrische Algebra |0 (DE-588)4156707-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Theoretische Mechanik |0 (DE-588)4185100-6 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
810 | 2 | |a Fundamental Theories of Physics, A New International Book Series on The Fundamental Theories of Physics |t Their Clarification, Development and Application |v 15 |w (DE-604)BV000012461 |9 15 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-009-4802-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027850697 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153081971081216 |
---|---|
any_adam_object | |
author | Hestenes, David |
author_facet | Hestenes, David |
author_role | aut |
author_sort | Hestenes, David |
author_variant | d h dh |
building | Verbundindex |
bvnumber | BV042415204 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)863776669 (DE-599)BVBBV042415204 |
dewey-full | 531 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 531 - Classical mechanics |
dewey-raw | 531 |
dewey-search | 531 |
dewey-sort | 3531 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-94-009-4802-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03491nmm a2200565zcb4500</leader><controlfield tag="001">BV042415204</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180109 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1986 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789400948020</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-009-4802-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789027725264</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-277-2526-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-009-4802-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863776669</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042415204</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">531</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hestenes, David</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">New Foundations for Classical Mechanics</subfield><subfield code="c">by David Hestenes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1986</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 644 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Fundamental Theories of Physics, A New International Book Series on The Fundamental Theories of Physics: Their Clarification, Development and Application</subfield><subfield code="v">15</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This is a textbook on classical mechanics at the intermediate level, but its main purpose is to serve as an introduction to a new mathematical language for physics called geometric algebra. Mechanics is most commonly formulated today in terms of the vector algebra developed by the American physicist J. Willard Gibbs, but for some applications of mechanics the algebra of complex numbers is more efficient than vector algebra, while in other applications matrix algebra works better. Geometric algebra integrates all these algebraic systems into a coherent mathematical language which not only retains the advantages of each special algebra but possesses powerful new capabilities. This book covers the fairly standard material for a course on the mechanics of particles and rigid bodies. However, it will be seen that geometric algebra brings new insights into the treatment of nearly every topic and produces simplifications that move the subject quickly to advanced levels. That has made it possible in this book to carry the treatment of two major topics in mechanics well beyond the level of other textbooks. A few words are in order about the unique treatment of these two topics, namely, rotational dynamics and celestial mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Astronomy, Observations and Techniques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mechanik</subfield><subfield code="0">(DE-588)4038168-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Algebra</subfield><subfield code="0">(DE-588)4156707-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Theoretische Mechanik</subfield><subfield code="0">(DE-588)4185100-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mechanik</subfield><subfield code="0">(DE-588)4038168-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geometrische Algebra</subfield><subfield code="0">(DE-588)4156707-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Theoretische Mechanik</subfield><subfield code="0">(DE-588)4185100-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Fundamental Theories of Physics, A New International Book Series on The Fundamental Theories of Physics</subfield><subfield code="t">Their Clarification, Development and Application</subfield><subfield code="v">15</subfield><subfield code="w">(DE-604)BV000012461</subfield><subfield code="9">15</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-009-4802-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027850697</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042415204 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:57Z |
institution | BVB |
isbn | 9789400948020 9789027725264 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027850697 |
oclc_num | 863776669 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (XI, 644 p) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 1986 |
publishDateSearch | 1986 |
publishDateSort | 1986 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Fundamental Theories of Physics, A New International Book Series on The Fundamental Theories of Physics: Their Clarification, Development and Application |
spelling | Hestenes, David Verfasser aut New Foundations for Classical Mechanics by David Hestenes Dordrecht Springer Netherlands 1986 1 Online-Ressource (XI, 644 p) txt rdacontent c rdamedia cr rdacarrier Fundamental Theories of Physics, A New International Book Series on The Fundamental Theories of Physics: Their Clarification, Development and Application 15 This is a textbook on classical mechanics at the intermediate level, but its main purpose is to serve as an introduction to a new mathematical language for physics called geometric algebra. Mechanics is most commonly formulated today in terms of the vector algebra developed by the American physicist J. Willard Gibbs, but for some applications of mechanics the algebra of complex numbers is more efficient than vector algebra, while in other applications matrix algebra works better. Geometric algebra integrates all these algebraic systems into a coherent mathematical language which not only retains the advantages of each special algebra but possesses powerful new capabilities. This book covers the fairly standard material for a course on the mechanics of particles and rigid bodies. However, it will be seen that geometric algebra brings new insights into the treatment of nearly every topic and produces simplifications that move the subject quickly to advanced levels. That has made it possible in this book to carry the treatment of two major topics in mechanics well beyond the level of other textbooks. A few words are in order about the unique treatment of these two topics, namely, rotational dynamics and celestial mechanics Physics Mathematics Mechanics Applications of Mathematics Astronomy, Observations and Techniques Mathematik Mechanik (DE-588)4038168-7 gnd rswk-swf Geometrische Algebra (DE-588)4156707-9 gnd rswk-swf Theoretische Mechanik (DE-588)4185100-6 gnd rswk-swf Mechanik (DE-588)4038168-7 s Geometrische Algebra (DE-588)4156707-9 s 1\p DE-604 Theoretische Mechanik (DE-588)4185100-6 s 2\p DE-604 Fundamental Theories of Physics, A New International Book Series on The Fundamental Theories of Physics Their Clarification, Development and Application 15 (DE-604)BV000012461 15 https://doi.org/10.1007/978-94-009-4802-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Hestenes, David New Foundations for Classical Mechanics Physics Mathematics Mechanics Applications of Mathematics Astronomy, Observations and Techniques Mathematik Mechanik (DE-588)4038168-7 gnd Geometrische Algebra (DE-588)4156707-9 gnd Theoretische Mechanik (DE-588)4185100-6 gnd |
subject_GND | (DE-588)4038168-7 (DE-588)4156707-9 (DE-588)4185100-6 |
title | New Foundations for Classical Mechanics |
title_auth | New Foundations for Classical Mechanics |
title_exact_search | New Foundations for Classical Mechanics |
title_full | New Foundations for Classical Mechanics by David Hestenes |
title_fullStr | New Foundations for Classical Mechanics by David Hestenes |
title_full_unstemmed | New Foundations for Classical Mechanics by David Hestenes |
title_short | New Foundations for Classical Mechanics |
title_sort | new foundations for classical mechanics |
topic | Physics Mathematics Mechanics Applications of Mathematics Astronomy, Observations and Techniques Mathematik Mechanik (DE-588)4038168-7 gnd Geometrische Algebra (DE-588)4156707-9 gnd Theoretische Mechanik (DE-588)4185100-6 gnd |
topic_facet | Physics Mathematics Mechanics Applications of Mathematics Astronomy, Observations and Techniques Mathematik Mechanik Geometrische Algebra Theoretische Mechanik |
url | https://doi.org/10.1007/978-94-009-4802-0 |
volume_link | (DE-604)BV000012461 |
work_keys_str_mv | AT hestenesdavid newfoundationsforclassicalmechanics |