Geometric Crystallography: An Axiomatic Introduction to Crystallography
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1986
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In the last decade mathematical crystallography has found increasing interest. Siginificant results have been obtained by algebraic, geometric, and group theoretic methods. Also classical crystallography in three-dimen sional Euclidean space has been extended to higher dimen sions in order to understand better the dimension independent crystallographic properties. The aim of this note is to introduce the reader to the fascinating and rich world of geometric crystallography. The prerequisites for reading it are elementary geometry and topological notations, and basic knowledge of group theory and linear algebra. Crystallography is geometric by its nature. In many cases, geometric arguments are the most appropriate and can thus best be understood. Thus the geometric point of view is emphasized here. The approach is axiomatic start ing from discrete point sets in Euclidean space. Symmetry comes in very soon and plays a central role. Each chapter starts with the necessary definitions and then the subject is treated in two- and three-dimensional space. Subsequent sections give an extension to higher dimensions. Short historical remarks added at the end of the chapters will show the development of the theory. The chapters are main ly self-contained. Frequent cross references, as well as an extended subject index, will help the reader who is only interested in a particular subject |
Beschreibung: | 1 Online-Ressource (274p) |
ISBN: | 9789400947603 9789027723413 |
DOI: | 10.1007/978-94-009-4760-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042415199 | ||
003 | DE-604 | ||
005 | 20151102 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s1986 |||| o||u| ||||||eng d | ||
020 | |a 9789400947603 |c Online |9 978-94-009-4760-3 | ||
020 | |a 9789027723413 |c Print |9 978-90-277-2341-3 | ||
024 | 7 | |a 10.1007/978-94-009-4760-3 |2 doi | |
035 | |a (OCoLC)863748651 | ||
035 | |a (DE-599)BVBBV042415199 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 548 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Engel, Peter |e Verfasser |4 aut | |
245 | 1 | 0 | |a Geometric Crystallography |b An Axiomatic Introduction to Crystallography |c by Peter Engel |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1986 | |
300 | |a 1 Online-Ressource (274p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a In the last decade mathematical crystallography has found increasing interest. Siginificant results have been obtained by algebraic, geometric, and group theoretic methods. Also classical crystallography in three-dimen sional Euclidean space has been extended to higher dimen sions in order to understand better the dimension independent crystallographic properties. The aim of this note is to introduce the reader to the fascinating and rich world of geometric crystallography. The prerequisites for reading it are elementary geometry and topological notations, and basic knowledge of group theory and linear algebra. Crystallography is geometric by its nature. In many cases, geometric arguments are the most appropriate and can thus best be understood. Thus the geometric point of view is emphasized here. The approach is axiomatic start ing from discrete point sets in Euclidean space. Symmetry comes in very soon and plays a central role. Each chapter starts with the necessary definitions and then the subject is treated in two- and three-dimensional space. Subsequent sections give an extension to higher dimensions. Short historical remarks added at the end of the chapters will show the development of the theory. The chapters are main ly self-contained. Frequent cross references, as well as an extended subject index, will help the reader who is only interested in a particular subject | ||
650 | 4 | |a Physics | |
650 | 4 | |a Geometry | |
650 | 4 | |a Crystallography | |
650 | 0 | 7 | |a Geometrie |0 (DE-588)4020236-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kristallographie |0 (DE-588)4033217-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Methode |0 (DE-588)4155620-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematik |0 (DE-588)4037944-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kristallographie |0 (DE-588)4033217-2 |D s |
689 | 0 | 1 | |a Geometrie |0 (DE-588)4020236-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 1 | 1 | |a Kristallographie |0 (DE-588)4033217-2 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Kristallographie |0 (DE-588)4033217-2 |D s |
689 | 2 | 1 | |a Mathematische Methode |0 (DE-588)4155620-3 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-009-4760-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027850692 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153081957449728 |
---|---|
any_adam_object | |
author | Engel, Peter |
author_facet | Engel, Peter |
author_role | aut |
author_sort | Engel, Peter |
author_variant | p e pe |
building | Verbundindex |
bvnumber | BV042415199 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)863748651 (DE-599)BVBBV042415199 |
dewey-full | 548 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 548 - Crystallography |
dewey-raw | 548 |
dewey-search | 548 |
dewey-sort | 3548 |
dewey-tens | 540 - Chemistry and allied sciences |
discipline | Chemie / Pharmazie Physik |
doi_str_mv | 10.1007/978-94-009-4760-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03509nmm a2200577zc 4500</leader><controlfield tag="001">BV042415199</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20151102 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1986 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789400947603</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-009-4760-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789027723413</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-277-2341-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-009-4760-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863748651</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042415199</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">548</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Engel, Peter</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometric Crystallography</subfield><subfield code="b">An Axiomatic Introduction to Crystallography</subfield><subfield code="c">by Peter Engel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1986</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (274p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In the last decade mathematical crystallography has found increasing interest. Siginificant results have been obtained by algebraic, geometric, and group theoretic methods. Also classical crystallography in three-dimen sional Euclidean space has been extended to higher dimen sions in order to understand better the dimension independent crystallographic properties. The aim of this note is to introduce the reader to the fascinating and rich world of geometric crystallography. The prerequisites for reading it are elementary geometry and topological notations, and basic knowledge of group theory and linear algebra. Crystallography is geometric by its nature. In many cases, geometric arguments are the most appropriate and can thus best be understood. Thus the geometric point of view is emphasized here. The approach is axiomatic start ing from discrete point sets in Euclidean space. Symmetry comes in very soon and plays a central role. Each chapter starts with the necessary definitions and then the subject is treated in two- and three-dimensional space. Subsequent sections give an extension to higher dimensions. Short historical remarks added at the end of the chapters will show the development of the theory. The chapters are main ly self-contained. Frequent cross references, as well as an extended subject index, will help the reader who is only interested in a particular subject</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crystallography</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kristallographie</subfield><subfield code="0">(DE-588)4033217-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kristallographie</subfield><subfield code="0">(DE-588)4033217-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Kristallographie</subfield><subfield code="0">(DE-588)4033217-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Kristallographie</subfield><subfield code="0">(DE-588)4033217-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-009-4760-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027850692</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042415199 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:57Z |
institution | BVB |
isbn | 9789400947603 9789027723413 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027850692 |
oclc_num | 863748651 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (274p) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 1986 |
publishDateSearch | 1986 |
publishDateSort | 1986 |
publisher | Springer Netherlands |
record_format | marc |
spelling | Engel, Peter Verfasser aut Geometric Crystallography An Axiomatic Introduction to Crystallography by Peter Engel Dordrecht Springer Netherlands 1986 1 Online-Ressource (274p) txt rdacontent c rdamedia cr rdacarrier In the last decade mathematical crystallography has found increasing interest. Siginificant results have been obtained by algebraic, geometric, and group theoretic methods. Also classical crystallography in three-dimen sional Euclidean space has been extended to higher dimen sions in order to understand better the dimension independent crystallographic properties. The aim of this note is to introduce the reader to the fascinating and rich world of geometric crystallography. The prerequisites for reading it are elementary geometry and topological notations, and basic knowledge of group theory and linear algebra. Crystallography is geometric by its nature. In many cases, geometric arguments are the most appropriate and can thus best be understood. Thus the geometric point of view is emphasized here. The approach is axiomatic start ing from discrete point sets in Euclidean space. Symmetry comes in very soon and plays a central role. Each chapter starts with the necessary definitions and then the subject is treated in two- and three-dimensional space. Subsequent sections give an extension to higher dimensions. Short historical remarks added at the end of the chapters will show the development of the theory. The chapters are main ly self-contained. Frequent cross references, as well as an extended subject index, will help the reader who is only interested in a particular subject Physics Geometry Crystallography Geometrie (DE-588)4020236-7 gnd rswk-swf Kristallographie (DE-588)4033217-2 gnd rswk-swf Mathematische Methode (DE-588)4155620-3 gnd rswk-swf Mathematik (DE-588)4037944-9 gnd rswk-swf Kristallographie (DE-588)4033217-2 s Geometrie (DE-588)4020236-7 s 1\p DE-604 Mathematik (DE-588)4037944-9 s 2\p DE-604 Mathematische Methode (DE-588)4155620-3 s 3\p DE-604 https://doi.org/10.1007/978-94-009-4760-3 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Engel, Peter Geometric Crystallography An Axiomatic Introduction to Crystallography Physics Geometry Crystallography Geometrie (DE-588)4020236-7 gnd Kristallographie (DE-588)4033217-2 gnd Mathematische Methode (DE-588)4155620-3 gnd Mathematik (DE-588)4037944-9 gnd |
subject_GND | (DE-588)4020236-7 (DE-588)4033217-2 (DE-588)4155620-3 (DE-588)4037944-9 |
title | Geometric Crystallography An Axiomatic Introduction to Crystallography |
title_auth | Geometric Crystallography An Axiomatic Introduction to Crystallography |
title_exact_search | Geometric Crystallography An Axiomatic Introduction to Crystallography |
title_full | Geometric Crystallography An Axiomatic Introduction to Crystallography by Peter Engel |
title_fullStr | Geometric Crystallography An Axiomatic Introduction to Crystallography by Peter Engel |
title_full_unstemmed | Geometric Crystallography An Axiomatic Introduction to Crystallography by Peter Engel |
title_short | Geometric Crystallography |
title_sort | geometric crystallography an axiomatic introduction to crystallography |
title_sub | An Axiomatic Introduction to Crystallography |
topic | Physics Geometry Crystallography Geometrie (DE-588)4020236-7 gnd Kristallographie (DE-588)4033217-2 gnd Mathematische Methode (DE-588)4155620-3 gnd Mathematik (DE-588)4037944-9 gnd |
topic_facet | Physics Geometry Crystallography Geometrie Kristallographie Mathematische Methode Mathematik |
url | https://doi.org/10.1007/978-94-009-4760-3 |
work_keys_str_mv | AT engelpeter geometriccrystallographyanaxiomaticintroductiontocrystallography |